PP: Deep clustering based on a mixture of autoencoders
Problem: clustering
A clustering network transforms the data into another space and then selects one of the clusters. Next, the autoencoder associated with this cluster is used to reconstruct the data-point.
Introduction:
traditional method: data------> extract a feature vector from each object --------> aggregate groups of vectors in a feature space.
cluster is represented by an autoencoder network. ??how
common method: k-means; but for the high-dimensional dataset, it's less useful because inter-point distances become less informative in high-dimensional spaces.
如果对于找一个序列的pattern来说,是不是就是时间维度作为高维情况,每个pattern作为一个cluster,而有的子序列不能归到cluster当中。
representation learning has been used to map the input data into a low-dimensional feature space.
Attempts: apply unsupervised deep learning approaches for clustering. ??how
However, most focus on clustering over a low-dimensional feature space.
Transform the data into more clustering-friendly representations:
A deep version of k-means is based on learning a data representation and applying k-means in the embedded space.
How to represent a cluster:
a vector VS an autoencoder network.
Data collapsing problem: 数据崩溃问题,对于每个数据库,你必须重新调一遍程序。
for multivariate time series, how to find patterns.
1. find patterns: SAX; TICC; slide windows; 导数
2. VG, statistic features.
3.
Supplementary knowledge:
1. Pattern recognition and clustering
Pattern recognition is a mature field in computer science with well-established techniques for the assignment of unknown patterns to categories, or classes. A pattern is defined as a vector of some number of measurements, called features. Usually, a pattern recognition system uses training samples from known categories to form a decision rule for unknown patterns. The unknown pattern is assigned to one of the categories according to the decision rule. Since we are interested in the classes of documents that have been assigned by the user, we can use pattern recognition techniques to try to classify previously unseen documents into the user's categories. While pattern recognition techniques require that the number and labels of categories are known, clustering techniques are unsupervised, requiring no external knowledge of categories. Clustering methods simply try to group similar patterns into clusters whose members are more similar to each other (according to some distance measure) than to members of other clusters. There is no a priori knowledge of patterns that belong to certain groups, or even how many groups are appropriate. Refer to basic pattern recognition and clustering texts such as [5, 6, 7] for further information.
We first employ pattern recognition techniques on documents to attempt to find features for classification, then focus on clustering the raw features of the documents.
PP: Deep clustering based on a mixture of autoencoders的更多相关文章
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 论文解读SDCN《Structural Deep Clustering Network》
前言 主体思想:深度聚类需要考虑数据内在信息以及结构信息. 考虑自身信息采用 基础的 Autoencoder ,考虑结构信息采用 GCN. 1.介绍 在现实中,将结构信息集成到深度聚类中通常需要解决以 ...
- 【论文阅读】Deep Clustering for Unsupervised Learning of Visual Features
文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, ...
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- Deep Clustering Algorithms
Deep Clustering Algorithms 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 本文研究路线:深度自编码器(Deep Autoen ...
- Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation: The lack of transparency of the deep learning models creates key barriers to establishi ...
随机推荐
- k8s系列----索引
day1:k8s集群准备搭建和相关介绍 day2:k8spod介绍与创建 day3:k8sService介绍及创建 day4:ingress资源和ingress-controller day5:存储卷 ...
- php 安装 event 和 libevent 扩展
这里使用的是php7.0.24 ,php是yum安装的 一.安装event扩展 用yum无法安装event扩展 手动安装 php 必须要开启 sockets 功能,需要安装php的socket扩展,才 ...
- 向C++之父Bjarne Stroustrup致敬
2013-04-25 21:30 (分类:社会人生) 非常好的文章 C ++ 的 背 影 ——C++之父Bjarne Strou ...
- 杭电-------2053Switch Game(C语言)
/* 题目大意是指:有n个灯泡,按1-n编号,要操作n次,第i次操作是将标号是i的倍数的变成相反状态.最终求得是n次操作后,编号为n的灯泡的状态,其实就是求n的约束有多少个,及灯泡n被操作了多少次*/ ...
- 杭电------2048神上帝以及老天爷(C语言写)
#include<stdio.h> ] = { -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- }; ] = { }; long long jiec ...
- Arm开发板+Qt学习之路-论can网通讯受log日志的影响
日期:2016-05-25 最近开发过程中发现一个问题,使用两个开发板进行can网通讯,按照经验来说,通讯的速度应该是很快的,项目中将接口的超时时间设置为100ms,在某种情境下,会在短时间内发送多次 ...
- SQL Server 2019 安装教程
SQL Server 2019 安装教程 下载安装SQL: 1.下载SQL Server 2019 Developer 官方网址:下载地址. 2.下拉选择免费版本,直接点击下载(别问,问就是家境贫寒
- 关于软件 TELEGRAM(电报) 的说明
PLUS是TELEGRAM(电报)的三方客户端. 而 电报 是一款即时通讯软件.功能全面,安全性好,但在国内无法直接访问. 相关安全性介绍请看这里:https://www.anquanke.com/p ...
- C# 制作关键字醒目显示控件
实现方式:WinForm自定义控件,继承系统Label控件实现. 第1步:创建“组件”,取名为:MarkLabel 第2步:修改添加如下代码: /* 添加命名空间引用: * using Sys ...
- flex布局小结
2009年,W3C 提出了一种新的方案----Flex 布局,可以简便.完整.响应式地实现各种页面布局.目前,它已经得到了所有浏览器的支持. Flex 是 Flexible Box 的缩写,意为&qu ...