01背包与完全背包(dp复习)
01背包和完全背包都是dp入门的经典,我的dp学的十分的水,借此更新博客的机会回顾一下
01背包:给定总容量为maxv的背包,有n件物品,第i件物品的的体积为w[i],价值为v[i],问如何选取才能是背包内的物品价值总和最大。
stdin:
5
1 2 3 4 5
5 4 3 2 1
stdout:
14
设dp[i][j]为取前i件物品时容量为j的最优解。
状态转移方程:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);
压缩后:dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
for (int i = ; i <= n; i++) {
for (int j = ; j <= maxv; j++) {
if (j < w[i])
dp[i][j] = dp[i - ][j];
else
dp[i][j] = max(dp[i - ][j], dp[i - ][j - w[i]] + v[i]);
}
}//二维dp
for (int i = ; i <= n; i++) {
for (int j = maxv; j >= w[i]; j--) {
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
}
}//一维
完全背包:在01背包的基础上,每件物品都不限次数。
从一维数组上区别0-1背包和完全背包差别就在循环顺序上,0-1背包必须逆序,因为这样保证了不会重复选择已经选择的物品,而完全背包是顺序,顺序会覆盖以前的状态,所以存在选择多次的情况,也符合完全背包的题意。状态转移方程都为dp[j] = max(dp[j],dp[j-w[i]]+v[i])。
for(int i=; i<=n; i++)
for(int j=w[i]; j<=maxv; j++)
f[j]=max(f[j],f[j-w[i]]+c[i]);
01背包与完全背包(dp复习)的更多相关文章
- BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)
题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...
- POJ 2923 Relocation(01背包变形, 状态压缩DP)
Q: 如何判断几件物品能否被 2 辆车一次拉走? A: DP 问题. 先 dp 求解第一辆车能够装下的最大的重量, 然后计算剩下的重量之和是否小于第二辆车的 capacity, 若小于, 这 OK. ...
- 背包问题(01背包,完全背包,多重背包(朴素算法&&二进制优化))
写在前面:我是一只蒟蒻~~~ 今天我们要讲讲动态规划中~~最最最最最~~~~简单~~的背包问题 1. 首先,我们先介绍一下 01背包 大家先看一下这道01背包的问题 题目 有m件物品和一个容量为 ...
- 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包
[题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...
- HDU2159--二维费用背包,三重背包
FATE Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- 区间DP复习
区间DP复习 (难度排序:(A,B),(F,G,E,D,H,I,K),(C),(J,L)) 这是一个基本全在bzoj上的复习专题 没有什么可以说的,都是一些基本的dp思想 A [BZOJ1996] [ ...
- 集训DP复习整理
DP复习 集训%你赛2:测绘(审题DP) 经过2000+个小时的努力终于把这道题做出来的蒟蒻通 分析: 这道题我一直没做出来的原因就是因为我太蒟了题面看不懂,题面读懂了,其实不是特别难. 题目翻译: ...
- poj 2184 01背包变形【背包dp】
POJ 2184 Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14657 Accepte ...
- dp复习 背包[礼物]
[问题描述]人生赢家老王在网上认识了一个妹纸,然后妹纸的生日到了,为了表示自己的心意,他决定送她礼物.可是她喜爱的东西特别多,然而他的钱数有限,因此他想知道当他花一定钱数后剩余钱数无法再购买任何一件剩 ...
随机推荐
- ScheduledThreadPoolExecutor中定时周期任务的实现源码分析
ScheduledThreadPoolExecutor是一个定时任务线程池,相比于ThreadPoolExecutor最大的不同在于其阻塞队列的实现 首先看一下其构造方法: public Schedu ...
- 什么是 Google Play服务
Google Play服务用于更新Google应用和Google Play提供的其他应用. 此组件可提供多种核心功能,例如对您的Google服务进行身份验证.同步联系人信息.提供最新的用户隐私设置,以 ...
- SpringBoot-2.1.1系列一:使用https
1.什么是https? HTTPS中文名称:超文本传输安全协议,是以安全为目标的HTTP通道,简单讲是HTTP的安全版.即HTTP下加入SSL层,HTTPS的安全基础是SSL,因此加密的详细内容就需要 ...
- Don’t Repeat Yourself,Repeat Yourself
Don't Repeat Yourself,Repeat Yourself Don't repeat yourself (DRY, or sometimes do not repeat yoursel ...
- Math&Random&ThreadLocalRandom类
Math类 //绝对值值运算: Math.abs(18.999); //返回19.999这个数的绝对值 Math.abs(-12.58); // 返回-12.58这个数的绝对值,为12.58 //取值 ...
- 密码 | 对称加密 - AES
一.AES 算法简介 高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准,用来替换 ...
- ArcEngine 创建要素,删除要素,生成网格,渲染图层(VB)
示例代码:https://github.com/yu969890202/ArcEngine/tree/master/WinFrom_ArcEngine_PointDistribution博客后面有两张 ...
- js正则定义支付宝账号、手机号、邮箱
一.支付宝账号:可以只输入数字.字母.字母(数字)+数字(字母),其中只字母中可以含有@._或者.也可以三者都可以包含并且可以在任意位置,限制:小于等于30位(可根据需求自定义范围): let zh ...
- JS原型,原型链,类,继承,class,extends,由浅到深
一.构造函数和原型 1.构造函数.静态成员和实例成员 在ES6之前,通常用一种称为构造函数的特殊函数来定义对象及其特征,然后用构造函数来创建对象.像其他面向对象的语言一样,将抽象后的属性和方法封装到对 ...
- Nginx. 用http访问https跨域
用http 访问 https域名, 报跨越问题 解决方法: 在nginx相应服务的转发配置下添加: add_header 'Access-Control-Allow-Origin' 'http://i ...