UPC备战省赛组队训练赛第十七场

            with zyd,mxl

G: Greatest Common Divisor

题目描述
There is an array of length n, containing only positive numbers.
Now you can add all numbers by many times.
Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd) is larger than or state that it is impossible.
You should notice that if you want to add one number by , you need to add all numbers by at the same time. 输入
The first line of input file contains an integer T (≤T≤), describing the number of test cases.
Then there are ×T lines, with every two lines representing a test case.
The first line of each case contains a single integer n (≤n≤1e5) described above.
The second line of that contains n integers ranging in [,1e9]. 输出
You should output exactly T lines.
For each test case, print Case d: (d represents the order of the test case) first.
Then output exactly one integer representing the answer.
If it is impossible, print - instead.

题目描述

样例输入

样例输出
Case :
Case : -
Case :

样例输入输出

题意:

  定义a[]数组存储输入的 n 个数;

  求使得 ∀i∈[1,n] GCD(a[i]+x) > 1 的最小的 x;

  如果不存在这样的x,输出-1;

思路:

  将数组 a 排序,去重;

  ①去重后,如果只有一个元素,输出 (a[1] == 1 ? 1:0);

  ②找到相邻两数差值的GCD记为gcd:

    (2.1)如果 gcd == 1 ,输出 -1

    (2.2)反之,所有数肯定可以通过增加 x 使得所有数变为 gcd 的倍数,当然也可以变为gcd因子的倍数,

      求解出最小的x输出;

AC代码:

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e5+; int n;
int a[maxn]; int GCD(int _a,int _b)
{
return _a == ? _b:GCD(_b%_a,_a);
}
ll Solve()
{
sort(a+,a+n+);
int t=unique(a+,a+n+)-a;
t--;
if(t == )///情况①
return a[] == ? :; ll gcd=a[]-a[];
for(int i=;i <= t;++i)
gcd=GCD(gcd,a[i]-a[i-]); if(gcd == )///情况(2.1)
return -;
ll ans=(a[]/gcd+(a[]%gcd == ? :))*gcd-a[];///情况(2.2)
for(ll i=;i*i <= gcd;++i)
{
if(gcd%i != )
continue;
ll j=gcd/i;
///找到最小的 curAns 使得所有数 +curAns 都可以变为 i,j 的倍数
ll curAns=(a[]/i+(a[]%i == ? :))*i-a[];
curAns=min(curAns,(a[]/j+(a[]%j == ? :))*j-a[]);
ans=min(ans,curAns);
}
return ans;
}
int main()
{
int test;
scanf("%d",&test);
for(int kase=;kase <= test;++kase)
{
scanf("%d",&n);
for(int i=;i <= n;++i)
scanf("%d",a+i); printf("Case %d: %lld\n",kase,Solve());
}
return ;
}

小结:

 比赛的时候,只考虑了使所有的数都变成gcd的最小的因子的倍数的情况;
并没有考虑到所有数变成gcd的其他因子的倍数使得答案最小;
赛后,吃完午饭美美的睡上了一觉;
午睡刚醒,就看到队友zyd给我发的G题ac的截图;
一脸懵逼的我问了句为啥????
例如 差值为21
21的非1的因子有3,,
所有数都变成3的倍数需要 +
所有数都变成7的倍数需要 +
所有数都变成21的倍数需要 +
答案当然是1啦,所以说,最优解不一定是变成gcd最小因子的倍数

CCPC2018 桂林 G "Greatest Common Divisor"(数学)的更多相关文章

  1. 2018CCPC桂林站G Greatest Common Divisor

    题目描述 There is an array of length n, containing only positive numbers.Now you can add all numbers by ...

  2. hdu 5207 Greatest Greatest Common Divisor 数学

    Greatest Greatest Common Divisor Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...

  3. 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)

    定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...

  4. upc组队赛17 Greatest Common Divisor【gcd+最小质因数】

    Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...

  5. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  6. greatest common divisor

    One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...

  7. 845. Greatest Common Divisor

    描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...

  8. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  9. LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45

    1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...

随机推荐

  1. BZOJ2770: YY的Treap

    原本看标题还以为是treap的题,但是实际上是线段树. 求两点的LCA相当于求区间priority最小值的位置. 然后就可以离线先离散化然后建树做了. 记录的minpos是线段树上叶子结点的节点编号. ...

  2. material-ui里面的withStyles是什么?

    export default withStyles(styles, { name: 'MuiAppBar' })(AppBar); //这里的作用是什么? withStyles 是一个 HOC 组件, ...

  3. html+js 在页面同步服务器时间

    将以下的代码  放置html页面中! <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...

  4. AtCoder Beginner Contest 075 C bridge【图论求桥】

    AtCoder Beginner Contest 075 C bridge 桥就是指图中这样的边,删除它以后整个图不连通.本题就是求桥个数的裸题. dfn[u]指在dfs中搜索到u节点的次序值,low ...

  5. 最优化WPF 3D性能(基于“Tier-2”硬件)

    原文:最优化WPF 3D性能(基于"Tier-2"硬件) 原文地址:Maximizing WPF 3D Performance on Tier-2 Hardware 开发人员在应用 ...

  6. SDWebImage源码解析之SDWebImageManager的注解

    http://www.cocoachina.com/ios/20150612/12118.html 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

  7. Flask学习之十一 邮件支持

    英文博客地址:blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-xi-email-support 中文翻译地址:http://www. ...

  8. ModuleNotFoundError: No module named 'tools.nnwrap' pytorch 安装

    https://pytorch.org/get-started/locally/ pytorch 主页选择后安装

  9. Nacos: Namespace 和 Endpoint 在生产环境下的最佳实践

    随着使用 Nacos 的企业越来越多,遇到的最频繁的两个问题就是:如何在我的生产环境正确的来使用 namespace 以及 endpoint.这篇文章主要就是针对这两个问题来聊聊使用 nacos 过程 ...

  10. Mac 安装homebrew,pkgutil --pkgs列出安装包

    Mac 安装homebrew Homebrew官网 http://brew.sh/index_zh-cn.html Homebrew是神马 Linux系统有个让人蛋疼的通病,软件包依赖,好在当前主流的 ...