CCPC2018 桂林 G "Greatest Common Divisor"(数学)
UPC备战省赛组队训练赛第十七场
with zyd,mxl
G: Greatest Common Divisor
题目描述
There is an array of length n, containing only positive numbers.
Now you can add all numbers by many times.
Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd) is larger than or state that it is impossible.
You should notice that if you want to add one number by , you need to add all numbers by at the same time. 输入
The first line of input file contains an integer T (≤T≤), describing the number of test cases.
Then there are ×T lines, with every two lines representing a test case.
The first line of each case contains a single integer n (≤n≤1e5) described above.
The second line of that contains n integers ranging in [,1e9]. 输出
You should output exactly T lines.
For each test case, print Case d: (d represents the order of the test case) first.
Then output exactly one integer representing the answer.
If it is impossible, print - instead.
题目描述
样例输入 样例输出
Case :
Case : -
Case :
样例输入输出
题意:
定义a[]数组存储输入的 n 个数;
求使得 ∀i∈[1,n] GCD(a[i]+x) > 1 的最小的 x;
如果不存在这样的x,输出-1;
思路:
将数组 a 排序,去重;
①去重后,如果只有一个元素,输出 (a[1] == 1 ? 1:0);
②找到相邻两数差值的GCD记为gcd:
(2.1)如果 gcd == 1 ,输出 -1
(2.2)反之,所有数肯定可以通过增加 x 使得所有数变为 gcd 的倍数,当然也可以变为gcd因子的倍数,
求解出最小的x输出;
AC代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e5+; int n;
int a[maxn]; int GCD(int _a,int _b)
{
return _a == ? _b:GCD(_b%_a,_a);
}
ll Solve()
{
sort(a+,a+n+);
int t=unique(a+,a+n+)-a;
t--;
if(t == )///情况①
return a[] == ? :; ll gcd=a[]-a[];
for(int i=;i <= t;++i)
gcd=GCD(gcd,a[i]-a[i-]); if(gcd == )///情况(2.1)
return -;
ll ans=(a[]/gcd+(a[]%gcd == ? :))*gcd-a[];///情况(2.2)
for(ll i=;i*i <= gcd;++i)
{
if(gcd%i != )
continue;
ll j=gcd/i;
///找到最小的 curAns 使得所有数 +curAns 都可以变为 i,j 的倍数
ll curAns=(a[]/i+(a[]%i == ? :))*i-a[];
curAns=min(curAns,(a[]/j+(a[]%j == ? :))*j-a[]);
ans=min(ans,curAns);
}
return ans;
}
int main()
{
int test;
scanf("%d",&test);
for(int kase=;kase <= test;++kase)
{
scanf("%d",&n);
for(int i=;i <= n;++i)
scanf("%d",a+i); printf("Case %d: %lld\n",kase,Solve());
}
return ;
}
小结:
比赛的时候,只考虑了使所有的数都变成gcd的最小的因子的倍数的情况;
并没有考虑到所有数变成gcd的其他因子的倍数使得答案最小;
赛后,吃完午饭美美的睡上了一觉;
午睡刚醒,就看到队友zyd给我发的G题ac的截图;
一脸懵逼的我问了句为啥????
例如 差值为21
21的非1的因子有3,,
所有数都变成3的倍数需要 +
所有数都变成7的倍数需要 +
所有数都变成21的倍数需要 +
答案当然是1啦,所以说,最优解不一定是变成gcd最小因子的倍数
CCPC2018 桂林 G "Greatest Common Divisor"(数学)的更多相关文章
- 2018CCPC桂林站G Greatest Common Divisor
题目描述 There is an array of length n, containing only positive numbers.Now you can add all numbers by ...
- hdu 5207 Greatest Greatest Common Divisor 数学
Greatest Greatest Common Divisor Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...
- 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)
定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...
- upc组队赛17 Greatest Common Divisor【gcd+最小质因数】
Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- greatest common divisor
One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...
- 845. Greatest Common Divisor
描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...
- CF1025B Weakened Common Divisor 数学
Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45
1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...
随机推荐
- JVM学习篇章(二)
上节我们已经介绍了jvm和监控的一下方法,下面举例说明一下: 瓶颈问题定位: 内存泄漏原因定位: 1.常见的内存泄漏 2.定位的方法
- Directx11教程(47) alpha blend(4)-雾的实现
原文:Directx11教程(47) alpha blend(4)-雾的实现 除了用来实现透明效果之外,我们还可以用alpha blend来实现雾(fog)的效果.通过逐渐清晰的雾气效果,可 ...
- Leetcode746.Min Cost Climbing Stairs使用最小花费爬楼梯
数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i](索引从0开始). 每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯. 您需 ...
- VS中,卸载,移除,删除项目的区别
不说话,上图.
- hdu5442 Favorite Donut 后缀数组 长春网赛
wa从一点到晚上11点没停过,也不知道为什么错,第二天换了个思路做,终于过了.这题还是有点问题的,数据有点水,我看到有人贴的代码baabbaab这组数据是4 0,明显错的,但是却可以过. 下面的是我第 ...
- spring-data-jpa实体类继承抽象类如何映射父类的属性到数据库
在抽象父类上加上注解@MappedSuperclass @MappedSuperclass public class Pet { private Integer id;//id private Str ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二)
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第七章:在Direct3D中绘制(二) 代码工程地址: https:/ ...
- POJ - 1679_The Unique MST
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Description Given a connected undirected grap ...
- LightOJ 1341 Aladdin and the Flying Carpet【整数分解】
题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1341 题意: 给定一个数,将其拆分成两个数的乘 ...
- Python基础:11变量作用域和闭包
一:变量作用域 变量可以是局部域或者全局域.定义在函数内的变量有局部作用域,在一个模块中最高级别的变量有全局作用域. 全局变量的一个特征是除非被删除掉,否则它们的存活到脚本运行结束,且对于所有的函数, ...