传送门

•题意

  给你一个大于 1 的正整数 n;

  它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少。

•题解

  定义 $ans$ 表示最终答案;

  ①如果 $ans \ge 5$:

    那么,肯定有 $n=p^{ans}\ ,\ p \le \sqrt[{ans}]{n}$,也就是说 $\ p \le 10^{\frac{18}{5}}$;

  所以,我们可以提前预处理出 $[1,10000]$ 内的素数,筛出 $n$ 中属于 $[1,10000]$ 内的质因子;

  如果在这个过程中出现 $n=1$ 或者 $ans=1$,那么直接返回 $ans$ 即可;

  如果筛完 $[1,10000]$ 内的素数后,$n > 1$,那么,就有如下情况:

    (1)存在质数 p,满足 p > 10000 并且 n 只能分解出一个 p,此时应输出 1;

    (2)存在质数 p,q,满足 p > 10000 , q > 10000,有 $n = p^2$ 或 $n = p^2 \cdot q^2$,对于这种情况,$n$ 肯定是个完全平方数;

    (3)存在质数 p,满足 p > 10000,并且有 $n=p^3$,这种情况下,$n$ 肯定是个立方数;

    (4)存在质数 p,满足 p > 10000,并且有 $n=p^4$;

  如果情况(1)成立,那么,情况(2)(3)(4)肯定不成立,但是情况(1)可能不好直接判断;

  那么,我们可以先判断情况(4)(2)(3)是否成立,如果不成立,那么(1)肯定成立;

  疑惑(1):如果 $(\sqrt[4]{n})^4=n$,那为什么一定有 $\sqrt[4]{n}$ 为素数呢?

    定义 $x=\sqrt[4]{n}$,那么有 $x \le 10^{\frac{18}{4}}$;

    如果 $x$ 为合数,那么势必存在某个大于 1 因子 f,$f \le \sqrt{x} < 10^4$;

    但,来到此步的条件是 $n$ 中所有属于 $[1,10000]$ 内的质因子已被筛走,所以,是不存满足条件的 $f$ 的;

       所以说,$x$ 一定是个素数;

  疑惑(2):为什么要先判断情况(4)再判断情况(2):

    因为满足情况(4)肯定满足情况(2),但是此时满足情况(2)的因子就不是质因子了;

•Code

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
const int N=1e4; ll n;
int cnt;
int prime[N];
bool isPrime[N+]; void Prime()
{
cnt=;
mem(isPrime,true);
isPrime[]=false; for(int i=;i <= N;++i)
{
if(isPrime[i])
prime[++cnt]=i; int x;
for(int j=;j <= cnt && (x=i*prime[j]) <= N;++j)
{
isPrime[x]=false; if(i%prime[j] == )
break;
}
}
}
bool Calc(ll x)
{
int l=,r=(int)1e6+;
while(r-l > )
{
ll mid=l+((r-l)>>);
if(mid*mid*mid > x)
r=mid;
else
l=mid; if(mid*mid*mid == x)
return true;
}
return false;
}
int Solve()
{
int ans=;
for(int i=;i <= cnt;++i)
{
int k=;
while(n%prime[i] == )
{
k++;
n /= prime[i];
}
if(k)
ans=min(ans,k); if(n == || ans == )
return ans;
} ll x=sqrt(sqrt(n));
ll y=sqrt(n); if(x*x*x*x == n)
ans=min(ans,);
else if(y*y == n)
ans=min(ans,);
else if(Calc(n))
ans=min(ans,);
else
ans=; return ans;
}
int main()
{
Prime(); int T;
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
printf("%d\n",Solve());
}
return ;
}

HDU 6623"Minimal Power of Prime"(数学)的更多相关文章

  1. HDU 6623 Minimal Power of Prime(数学)

    传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 把[1,10000]内的素数筛出来,然后对于每个素$P$数遍历 ...

  2. HDU 6623 Minimal Power of Prime

    Time limit 1000 ms Memory limit 65536 kB OS Windows 中文题意 给一个数n,设将n质因数分解后可以得到 \[n=\prod_{i=1}^{\omega ...

  3. HDU 6623 Minimal Power of Prime(思维)题解

    题意: 已知任意大于\(1\)的整数\(a = p_1^{q_1}p_2^{q_2} \cdots p_k^{q_k}\),现给出\(a \in [2,1e18]\),求\(min\{q_i\},q ...

  4. 2019杭电多校第四场hdu6623 Minimal Power of Prime

    Minimal Power of Prime 题目传送门 解题思路 先打\(N^\frac{1}{5}\)内的素数表,对于每一个n,先分解\(N^\frac{1}{5}\)范围内的素数,分解完后n变为 ...

  5. [2019杭电多校第四场][hdu6623]Minimal Power of Prime

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6623 题目大意为求一个数的唯一分解的最小幂次.即120=23*31*51则答案为1. 因为数字太大不能 ...

  6. 2019 Multi-University Training Contest 4 - 1010 - Minimal Power of Prime

    http://acm.hdu.edu.cn/showproblem.php?pid=6623 题意,给50000个1e18级别的数N,求它质因数分解里面的最小的指数(不算0) 比赛的时候给划了一个1e ...

  7. 2019HDU多校Minimal Power of Prime——分段讨论&&思维

    题目 将 $n$($1 < n \leq 10^{18}$)质因数分解,求质因数幂的最小值. 分析 直接质因数分解,不太行. 可以这样想,对小区间质因数分解,n变小了,再枚举答案. 打印1-10 ...

  8. 2019hdu多校 Minimal Power of Prime

    题目链接:Click here 题目大意:求一个数分解质因数后的最小幂指数 Solution: 首先,我们肯定是不能直接暴力求解的 我们先考虑筛出1e4范围以内的所有质数,把x所有这个范围内的质因子筛 ...

  9. 【HDOJ6623】Minimal Power of Prime(Powerful Number)

    题意:给定大整数n,求其质因数分解的最小质数幂 n<=1e18 思路:常规分解算法肯定不行 考虑答案大于1的情况只有3种:质数的完全平方,质数的完全立方,以及p^2*q^3,p,q>=1三 ...

随机推荐

  1. ANN中乘积量化与多维倒排小结

    目前特征向量的比对加速优化能极大缩短比对耗时,改善用户体验. 优化的途径主要有两种,一是使用指令集(SSE,AVX)加速运算.二是使用ANN替代暴力搜索. 乘积量化和倒排索引组合是ANN中效果较好且实 ...

  2. 数据ETL是指什么

    ETL是数据抽取(Extract).清洗(Cleaning).转换(Transform).装载(Load)的过程.是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义 ...

  3. 【JZOJ4787】【NOIP2016提高A组模拟9.17】数格子

    题目描述 输入 输出 样例输入 1 10000 3 10000 5 10000 0 0 样例输出 1 11 95 数据范围 每个测试点数据组数不超过10组 解法 状态压缩动态规划. 设f[i][j]表 ...

  4. Codeforces 425B

    点击打开题目链接 题意:给定一个n×m的0,1矩阵,做多可以对矩阵做k次变换,每次变换只可以将矩阵的某一个元素由0变成1,或从1变成0. 求最小的变换次数使得得到的矩阵满足:每一个连通块都是一个“实心 ...

  5. PyCharm切换Python版本

    由于代码格式问题,很多情况下需要我们去切换Python版本,那么在当下火爆的PyCharm中是如何切换Python版本的呢? 打开File菜单,选择Settings: 打开Settings窗口后,选择 ...

  6. shell学习(22)- comm

    1.预备知识 comm命令可用于比较两个已排序的文件.它可以显示出第一个文件和第二个文件所独有的行以及这两个文件所共有的行.该命令有一些选项可以禁止显示指定的列,以便于执行交集和求差操作. 交集(in ...

  7. Selenium-----wait的三种等待

    在UI自动化测试中,必然会遇到环境不稳定,网络慢的情况,这时如果你不做任何处理的话,代码会由于没有找到元素,而报错.这时我们就要用到wait(等待),而在Selenium中,我们可以用到一共三种等待, ...

  8. SAS信用评分之番外篇异常值的识别

    SAS信用评分之番外篇异常值的识别 今天想分享给大家的是我早期建模的时候一个识别异常值的办法,也许你在"信用风险评分卡研究"看过,但是代码只能识别一个变量,我将这个代码作了改良,但 ...

  9. 2018-8-10-三种方式设置特定设备UWP-XAML-view

    title author date CreateTime categories 三种方式设置特定设备UWP XAML view lindexi 2018-08-10 19:16:52 +0800 20 ...

  10. importError: DLL load failed when import matplotlib.pyplot as plt

    importError: DLL load failed when import matplotlib.pyplot as plt 出现这种情况的原因, 大多是matplotlib的版本与python ...