整理自:

https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1

EM算法是用于含有隐变量模型的极大似然估计或者极大后验估计,有两步组成:E步,求期望(expectation);M步,求极大(maxmization)。本质上EM算法还是一个迭代算法,通过不断用上一代参数对隐变量的估计来对当前变量进行计算,直到收敛。 
注意:EM算法是对初值敏感的,而且EM是不断求解下界的极大化逼近求解对数似然函数的极大化的算法,也就是说EM算法不能保证找到全局最优值。对于EM的导出方法也应该掌握。

机器学习——EM的更多相关文章

  1. 机器学习-EM算法-pLSA模型笔记

    pLSA模型--基于概率统计的pLSA模型(probabilistic Latent Semantic Analysis,概率隐语义分析),增加了主题模型,形成简单的贝叶斯网络,可以使用EM算法学习模 ...

  2. 机器学习-EM算法笔记

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型 ...

  3. 机器学习——EM算法

    1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...

  4. 机器学习-EM算法

    最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准 ...

  5. 机器学习-EM算法-GMM模型笔记

    GMM即高斯混合模型,下面根据EM模型从理论公式推导GMM: 随机变量X是有K个高斯分布混合而成,取各个高斯分布的概率为φ1,φ2,... ,φK,第i个高斯分布的均值为μi,方差为Σi.若观测到随机 ...

  6. 机器学习-EM算法的收敛证明

    上一篇开头说过1983年,美国数学家吴建福(C.F. Jeff Wu)给出了EM算法在指数族分布以外的收敛性证明. EM算法的收敛性只要我们能够证明对数似然函数的值在迭代的过程中是增加的 即可: 证明 ...

  7. 机器学习——EM算法与GMM算法

    目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂 ...

  8. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  9. 简单易学的机器学习算法——EM算法

    简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...

随机推荐

  1. jq处理JSON数据, jq Manual (development version)

    jq 允许你直接在命令行下对 JSON 进行操作,包括分片.过滤.转换等等.让我们通过几个例子来说明 jq 的功能:一.输出格式化,漂亮的打印效果如果我们用文本编辑器打开 JSON,有时候可能看起来会 ...

  2. 【JZOJ4835】【GDOI2017模拟10.31】量化交易

    题目描述 数据范围 解法 贪心: 从左往右枚举,设枚举到元素为x,并维护一个堆: 设此时堆顶元素为y, 如果x大于y,那么x可以与y产生差价,立即将差价贡献给答案. 如果y之前已经和其他元素z产生过差 ...

  3. 小爬爬1:jupyter简单使用&&爬虫相关概念

    1.jupyter的基本使用方式 两种模式:code和markdown (1)code模式可以直接编写py代码 (2)markdown可以直接进行样式的指定 (3)双击可以重新进行编辑 (4)快捷键总 ...

  4. pytorch 多GPU训练总结(DataParallel的使用)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_40087578/artic ...

  5. CSDN编程挑战——《-3+1》

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/user_longling/article/details/24674033 -3+1 题目详情: 有 ...

  6. 3DMAX安装失败怎样卸载重新安装3DMAX,解决3DMAX安装失败的方法总结

    技术帖:3DMAX没有按照正确方式卸载,导致3DMAX安装失败.楼主也查过网上关于如何解决3DMAX安装失败的一些文章,是说删除几个3DMAX文件和3DMAX软件注册表就可以解决3DMAX安装失败的问 ...

  7. 一个 PHP 面试题

    一个 PHP 面试题 $i = 0; $j =1; if ($i = 5 || ($j =6)) {echo $i,$j++;} 拿来当面试题不错. 实际并不会这样用,但这个题可以考基础.

  8. @atcoder - AGC036E@ ABC String

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个仅由 A, B, C 组成的字符串 S. 求 S 的一个 ...

  9. windows 下的 Apache 二级域名 目录绑定配置

    通常我们注册的域名都是顶级域名  如 www.potatog.com,我们希望这个域名可以访问服务器的不同网站或者不同功能等等 可能会这样 www.potatog.com/api 或者 www.pot ...

  10. 利用mock生成随机的东西

    Mock.mock({ "list|100": [ { 'id|+1': 1,//id排列 'color': '@color()',//随机颜色 'date': '@datetim ...