Time Limit: 10 Sec  Memory Limit: 32 MB

Submit: 1208  Solved: 402

[Submit][Status][Discuss]

Description

给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串。

Input

第一行是一个正整数n(n<=12),表示给定的字符串的个数。以下的n行,每行有一个全由大写字母组成的字符串。每个字符串的长度不超过50.

Output

只有一行,为找到的最短的字符串T。在保证最短的前提下,如果有多个字符串都满足要求,那么必须输出按字典序排列的第一个。

Sample Input

2


ABCD

BCDABC

Sample Output

ABCDABC

【题解】

(看不懂的话就先看代码再看题解)

给出n个串。要找一个最短的串。满足n个所给的串都是这个串的子串。

设f[i][j]表示已经加入的字符串集合的状态为i,最后一个加入到该集合中的字符串的序号为j.

这里的加入集合过程。可以想象成把一个字符串拼接在另一个字符串后面。但是不同的是,这个拼接的过程有可能不会增加字符串的长度。即另一个字符串包括了这个字符串。右或者,拼接的时候长度不一定是两个字符串的长度之和。因为可能前一个字符串的后面有一部分和这个新加入的字符串的前面一样。

根据这个规则处理出cost[i][j]表示把j这个字符串"接到"i这个字符串后面会增加多少长度。

转移f[i][j]的时候。先枚举i这个状态的最后一个字符串是什么。

然后枚举哪一个字符串是这个i状态没有的。就尝试进行拼接(如果答案更优);

然后因为要字典序最小。在更新的过程中还要记录每个f[i][j]所代表的字符串是什么。不时地还要用strcmp进行比较。

然后是hash函数的部分。那个函数用了比价高的进制,以此来记录某段序列。第一眼看过去就能发现p[50]绝对会超unsigned int 的范围。但是超过之后是不会报错的。它会变小一点。然后超过了范围又变大。

可以观察一下p。

然后就是用加减来获取一个字符串里面某段区间的字符的hash值。

以此来判断是否有交集。或者说另一个串在前一个串的里面。

【代码】

#include <cstdio>
#include <cstring> unsigned int p[51]; struct data2
{
char s[51];
int len;
int hash[51];
unsigned int get_key(int begin, int end)//获取字符串里面[begin,end]区间的hash字符的hash值
{
return hash[end] - hash[begin - 1] * p[end - begin + 1];
}
}; data2 a[13];
int n,INF;
int cost[13][13];
int f[4096][13];
char temp[601];
char fa[4096][13][601]; int min(int x, int y)
{
return x > y ? y : x;
} int sear_ch(int x, int y)//判断x和y拼接在一起要增加多少长度
{
int len1 = a[x].len, len2 = a[y].len;
int s = min(len1, len2);
int ret = 0;
bool flag = 0;
if (len1 >= len2)
flag = 1;
if (flag)//这是字符串y为x的子串则不会增加强度
{
for (int i = 1; i <= len1 - len2 + 1; i++)
{
if (a[x].get_key(i, i + len2 - 1) == a[y].hash[len2])
return -1;
}
}
for (int i = 1;i <= s;i++)//如果不是子串就找交集的部分
if (a[x].get_key(len1 - i + 1, len1) == a[y].hash[i])
{
ret = i;
}
return len2 - ret;
} void input_data()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%s", a[i].s+1);
a[i].len = strlen(a[i].s + 1);
for (int j = 1; j <= a[i].len; j++)//这个hash函数超级奇怪的。。。
a[i].hash[j] = a[i].hash[j - 1] * 131 + a[i].s[j];
}
for (int i = 1;i <= n;i++)
for (int j = 1; j <= n; j++)
{
if (i == j)
continue;
cost[i][j] = sear_ch(i, j);
}
} void init()
{
p[0] = 1;
for (int i = 1; i <= 50; i++)
p[i] = p[i - 1] * 131;
} void get_ans()
{
memset(f, 127 / 3, sizeof(f));
INF = f[0][0];
for (int i = 1; i <= n; i++)
{
f[1 << (i - 1)][i] = a[i].len;//只有第i个字符串
for (int j = 1; j <= a[i].len; j++)//则状态就是这个字符串
fa[1 << (i - 1)][i][j] = a[i].s[j];
fa[1 << (i - 1)][i][a[i].len + 1] = '\0';
}
for (int j = 0;j <= (1<<n)-1;j++)//从小到大枚举状态
for (int i = 1;i <= n;i++)//枚举要拼到后面的字符串
if (!(j&(1 << (i - 1))))//要求没有这个字符串才能拼接
{
for (int k = 1;k <= n;k++)//枚举j这个状态的最后一个字符串
if (j &(1 << (k - 1)))//如果有这个字符串
{
if (cost[k][i] == -1)//是子串的情况
{
if (f[j][k] < f[j | (1 << (i - 1))][k])
{
f[j | (1 << (i - 1))][k] = f[j][k];
for (int l = 1; l <= f[j][k]; l++)
fa[j | (1 << (i - 1))][k][l] = fa[j][k][l];
fa[j | (1 << (i - 1))][k][f[j][k] + 1] = '\0';
}
else
if (f[j][k] == f[j | (1 << (i - 1))][k] && f[j][k] < INF)
{
for (int l = 1; l <= f[j][k]; l++)
temp[l] = fa[j][k][l];
temp[f[j][k] + 1] = '\0';
if (strcmp(temp + 1, fa[j | (1 << (i - 1))][k] + 1) < 0)
{
for (int l = 1; l <= f[j][k]; l++)
fa[j | (1 << (i - 1))][k][l] = temp[l];
fa[j | (1 << (i - 1))][k][f[j][k] + 1] = '\0';
}
}
}
else
{//可以更新的情况
if (f[j][k] + cost[k][i] < f[j | (1 << (i - 1))][i])
{
f[j | (1 << (i - 1))][i] = f[j][k] + cost[k][i];
for (int l = 1; l <= f[j][k]; l++)
fa[j | (1 << (i - 1))][i][l] = fa[j][k][l];
for (int l = 1; l <= cost[k][i]; l++)
fa[j | (1 << (i - 1))][i][f[j][k] + l] = a[i].s[l + a[i].len - cost[k][i]];
fa[j | (1 << (i - 1))][i][f[j][k] + cost[k][i] + 1] = '\0';
}
else
if (f[j][k] + cost[k][i] == f[j | (1 << (i - 1))][i]
&& f[j | (1 << (i - 1))][i] < INF)
{
for (int l = 1; l <= f[j][k]; l++)
temp[l] = fa[j][k][l];
for (int l = 1; l <= cost[k][i]; l++)
temp[f[j][k] + l] = a[i].s[l + a[i].len - cost[k][i]];
temp[f[j][k] + cost[k][i] + 1] = '\0';
if (strcmp(temp + 1, fa[j | (1 << (i - 1))][i] + 1) < 0)
{
for (int l = 1; l <= f[j][k] + cost[k][i]; l++)
fa[j | (1 << (i - 1))][i][l] = temp[l];
fa[j | (1 << (i - 1))][i][f[j][k] + cost[k][i] + 1] = '\0';
}
}
}
}
}
} void output_ans()
{
int mi = INF;
for (int i = 1; i <= n; i++)
mi = min(mi, f[(1 << n) - 1][i]);
char ans[602];
for (int i = 1; i <= mi; i++)//先让字典序最大。然后找最小的字典序
ans[i] = 'z';
ans[mi + 1] = '\0';
for (int i = 1;i <= n;i++)
if (f[(1 << n) - 1][i] == mi)
{
if (strcmp(fa[(1 << n) - 1][i] + 1, ans + 1)<0)
strcpy(ans + 1, fa[(1 << n) - 1][i] + 1);
}
printf("%s\n", ans + 1);
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
init();
input_data();
get_ans();
output_ans();
return 0;
}

【33.28%】【BZOJ 1195】[HNOI2006]最短母串的更多相关文章

  1. bzoj 1195: [HNOI2006]最短母串 爆搜

    1195: [HNOI2006]最短母串 Time Limit: 10 Sec  Memory Limit: 32 MBSubmit: 894  Solved: 288[Submit][Status] ...

  2. BZOJ 1195: [HNOI2006]最短母串

    1195: [HNOI2006]最短母串 Time Limit: 10 Sec  Memory Limit: 32 MBSubmit: 1346  Solved: 450[Submit][Status ...

  3. bzoj 1195 [HNOI2006]最短母串 bfs 状压 最短路 AC自动机

    LINK:最短母串 求母串的问题.不适合SAM. 可以先简化问题 考虑给出的n个字符串不存在包含关系. 那么 那么存在的情况 只可能有 两个字符串拼接起来能表示另外一个字符串 或者某个字符串的后缀可以 ...

  4. 【刷题】BZOJ 1195 [HNOI2006]最短母串

    Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. Input 第一行是一个正整数n(n<=12) ...

  5. BZOJ 1195 [HNOI2006]最短母串 (Trie图+状压+bfs最短路)

    BZOJ1195 LOJ10061 题目大意:给你$n$个模式串,求一个最短且字典序最小的文本串并输出这个串,$n<=12,len<=50$ 首先对所有模式串构造$Trie$图,$Trie ...

  6. bzoj 1195: [HNOI2006]最短母串【状压dp】

    我有病吧--明明直接枚举是否匹配就可以非要写hash,然后果然冲突了(--我个非酋居然还敢用hash 设f[s][i]为已选串状态为s并且最后一个串是i,还有预处理出g[i][j]表示最长有长为g[i ...

  7. BZOJ 1195: [HNOI2006]最短母串 AC自动机+状压+搜索

    思路比较直接. 由于 $n$ 很小,直接定义 $f[i][j]$ 表示当前在自动机中的节点 $i,$ 被覆盖串的集合为 $j$ 的方案数. #include <bits/stdc++.h> ...

  8. 【状态压缩dp】1195: [HNOI2006]最短母串

    一个清晰的思路就是状压dp:不过也有AC自动机+BFS的做法 Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T ...

  9. 1195: [HNOI2006]最短母串 - BZOJ

    Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串.Input 第一行是一个正整数n(n<=12), ...

  10. 1195: [HNOI2006]最短母串

    思路:好像以前谁问过我这题...  状个压就好啦, 把包含在其他串中的字符串删掉, 预处理除每两个字符串之间的关系, dp[ state ][ i ] 表示在state的状态下, 最后一个字符串是第i ...

随机推荐

  1. Leetcode812.Largest Triangle Area最大三角形面积

    给定包含多个点的集合,从其中取三个点组成三角形,返回能组成的最大三角形的面积. 示例: 输入: points = [[0,0],[0,1],[1,0],[0,2],[2,0]] 输出: 2 解释: 这 ...

  2. hdu1536 sg打表

    标记数组用bool型防止超时.输入的f[ ]要排序. #include<stdio.h> #include<string.h> #include<algorithm> ...

  3. iOS小技巧:用runtime 解决UIButton 重复点击问题

    http://www.cocoachina.com/ios/20150911/13260.html 作者:uxyheaven 授权本站转载. 什么是这个问题 我们的按钮是点击一次响应一次, 即使频繁的 ...

  4. thinkphp5.0 模板包含文件

    在index.html里包含layout.html:{include file=“layout”}它这里是以绝对路径查找所包含的文件,默认是view目录下 在这种情况下,要在在index.html里包 ...

  5. GDB调试命令手册

    使用GDB 启动 $ gdb program           # program是你的可执行文件,一般在当前目录 $ gdb program core      # gdb同时调试运行程序和cor ...

  6. 《DL/T 976-2017 带电作业用工具、装置和设备预防性试验规程》中的样品名称及试验项目

  7. el-table中加载图片问题

    <el-table-column label="头像" width="100"> <template scope="scope&qu ...

  8. selenium实现网页截全屏

    from selenium import webdriver options = webdriver.ChromeOptions() options.add_argument('--headless' ...

  9. SQL if语句简要

    if语句 可以作为表达式用 可以在存储过程中作为流程控制语句用 表达式 IF(条件,条件true,条件false) 示例 sex字段m,f 互换 update salary set sex = if( ...

  10. P2532 [AHOI2012]树屋阶梯

    题目:P2532 [AHOI2012]树屋阶梯 思路: 打表之后不难看出是裸的Catalan数.简单证明一下: 对于任意一种合法方案,都可以表示为在左下角先放一个\(k*(n+1-k),k\in[1, ...