这几天再看 virtrual-dom,关于两个列表的对比,讲到了 Levenshtein distance 距离,周末抽空做一下总结。

Levenshtein Distance 介绍

在信息理论和计算机科学中,Levenshtein 距离是用于测量两个序列之间的差异量(即编辑距离)的度量。两个字符串之间的 Levenshtein 距离定义为将一个字符串转换为另一个字符串所需的最小编辑数,允许的编辑操作是单个字符的插入,删除或替换。

例子

‘kitten’和’sitten’之间的 Levenshtein 距离是 3,因为一下三个编辑将一个更改为另一个,并且没有办法用少于三个编辑来执行操作。

  1. k itten sitten => 用’s’代替’k’
  2. sitt e n sitt i => 用’i’代替’e’
  3. sittin sittin g 在结尾插入’g’

Levenshtein Distance (编辑距离) 算法详解

为了得到编辑距离,我们用 beauty 和 batyu 为例:

图示如 ① 单元位置是两个单词的第一个字符 [b] 比较得到的值,其的值有它的上方的值 (1)、它左方的值 (1) 和它左上角的值 (0) 来决定。当单元格所在的行和列所对应的字符相等时,单元格的值为左上方的值。

否则,单元格左上角的值与其上方和左方的值进行比较,它们之间的最小值 + 1 即是单元格的值。

图中 ① 的值由于单元格行和列相等,所以取左上角值 0。

图中 ② 的值由于单元格行列不相等,(1, 2, 0) 取最小为 0, 结果 + 1, 所以 ② 值为 1。

图示 ③ 的值由于单元格行列不相等,(1, 0, 2) 取最小 0, 结果 + 1, 所以 ③ 值为 1。

算法证明

这个算法计算的是将 s [1…i] 转换为 t [1…j](例如将 beauty 转换为 batyu)所需最少的操作数(也就是所谓的编辑距离),这个操作数被保存在 d [i,j](d 代表的就是上图所示的二维数组)中。

  • 在第一行与第一列肯定是正确的,这也很好理解,例如我们将 beauty 转换为空字符串,我们需要进行的操作数为 beauty 的长度(所进行的操作为将 beauty 所有的字符丢弃)。
  • 我们对字符的可能操作有三种:
  • 将 s [1…n] 转换为 t [1…m] 当然需要将所有的 s 转换为所有的 t,所以,d [n,m](表格的右下角)就是我们所需的结果。
  • 如果我们可以使用 k 个操作数把 s [1…i] 转换为 t [1…j-1],我们只需要把 t [j] 加在最后面就能将 s [1…i] 转换为 t [1…j],操作数为 k+1
  • 如果我们可以使用 k 个操作数把 s [1…i-1] 转换为 t [1…j],我们只需要把 s [i] 从最后删除就可以完成转换,操作数为 k+1
  • 如果我们可以使用 k 个操作数把 s [1…i-1] 转换为 t [1…j-1],我们只需要在需要的情况下(s [i] != t [j])把 s [i] 替换为 t [j],所需的操作数为 k+cost(cost 代表是否需要转换,如果 s [i]==t [j],则 cost 为 0,否则为 1)。

可能的改进

  • 现在的算法复杂度为 O (m*n),可以将其改进为 O (m)。因为这个算法只需要上一行和当前行被存储下来就可以了。
  • 如果需要重现转换步骤,我们可以把每一步的位置和所进行的操作保存下来,进行重现。
  • 如果我们只需要比较转换步骤是否小于一个特定常数 k,那么只计算高宽宽为 2k+1 的矩形就可以了,这样的话,算法复杂度可简化为 O (kl),l 代表参加对比的最短 string 的长度。
  • 我们可以对三种操作(添加,删除,替换)给予不同的权值(当前算法均假设为 1,我们可以设添加为 1,删除为 0,替换为 2 之类的),来细化我们的对比。
  • 如果我们将第一行的所有 cell 初始化为 0,则此算法可以用作模糊字符查询。我们可以得到最匹配此字符串的字符串的最后一个字符的位置(index number),如果我们需要此字符串的起始位置,我们则需要存储各个操作的步骤,然后通过算法计算出字符串的起始位置。
  • 这个算法不支持并行计算,在处理超大字符串的时候会无法利用到并行计算的好处。但我们也可以并行的计算 cost values(两个相同位置的字符是否相等),然后通过此算法来进行整体计算。
  • 如果只检查对角线而不是检查整行,并且使用延迟验证(lazy evaluation),此算法的时间复杂度可优化为 O (m (1+d))(d 代表结果)。这在两个字符串非常相似的情况下可以使对比速度速度大为增加。

字符串比较代码

这一部分的代码,参考了 https://rosettacode.org/wiki/Levenshtein_distance#ES5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
const ld = (a, b) => {
let t = [], u, i, j, m = a.length, n = b.length; if (!m) return b;
if (!n) return a; for (j = 0; j <= m; j++) {
t[j] = j;
} console.log(t); for (i = 1; i <= n; i++) {
for (u = [i], j = 1; j <= m; j++) {
u[j] = a[j - 1] === b[i - 1] ? t[j - 1] : Math.min(t[j - 1], t[j], u[j - 1]) + 1 // Levenshtein Distance 算法核心比较部分。
} t = u;
console.log(t);
} return u[m];
} [['beauty', 'batyu', 3],
].forEach(function (v) {
var a = v[0], b = v[1], t = v[2], d = ld(a, b);
if (d !== t) {
console.log('levenstein("' + a + '","' + b + '") was ' + d + ' should be ' + t);
}
}); // 打印出来
[ 0, 1, 2, 3, 4, 5, 6 ]
[ 1, 0, 1, 2, 3, 4, 5 ]
[ 2, 1, 1, 1, 2, 3, 4 ]
[ 3, 2, 2, 2, 2, 2, 3 ]
[ 4, 3, 3, 3, 3, 3, 2 ]
[ 5, 4, 4, 4, 3, 4, 3 ]

还原字符串

上面总结了传统的计算字符串之间的差距,那么当我们怎么能在计算的过程中,记录需要转换的步骤,并且进行还原呢。

这里我们需要对比较的每一位的步骤有一个了解。

为了得到编辑距离,我们用 beauty 和 batyu 为例:
从上面一节的图中可以看到,'beauty' 转换为 '' ,对一个的第一行的 [1,2,3,4,5,6],每一个步骤都相对与上一个元素新建一个元素,同理 '' 转换为 'batyu',每一个值都是相对一上一个元素的删除步骤。

那么对角线也显而易见就是先相对于替换操作。那么我们现在需要做的就是,记录下相对应的索引和元素以及需要进行的操作,并将其保存为一个对象,每次新增的对象用数组来保存就可以了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
const actionType = {
TYPE_REPLACE: 'TYPE_REPLACE',
TYPE_NEW: 'TYPE_NEW',
TYPE_DELETE: 'TYPE_DELETE'
} // 生成对象的方法
const patchObj = (index, type, item = '') => {
return {
index,
type,
item
}
}

下面是 compare 方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
*
* @param { array } r 替换操作 replace
* @param { array } n 新建操作 new
* @param { array } d 删除操作 delete
* @param { number } i 需要转换元素的 index
* @param { number } j 需要删除元素的 index
* @param { string } b 比较字符串
*/
const compare = (r, n, d, i, j, b) => {
const min = Math.min(r.length, n.length, d.length); switch (min) {
case r.length:
return [...r, patchObj(i, actionType.TYPE_REPLACE, b[i])];
case n.length:
return [...n, patchObj(i, actionType.TYPE_NEW, b[i])];
case d.length:
return [...d, patchObj(j, actionType.TYPE_DELETE)];
}
}

上面需要注意的是,我们一组保存了多个数组对象,不要对原数组进行操作,每一次操作我们都需要拷贝一个新的数组对象。

具体的的 diff 代码参考 diff 代码

得到了,patches 对象,剩下的我们就需要 patch 了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
const patch = (a, diffs) => {
let aList = a.split('');
let delCount = 0; // 删除之后,后续的index计算需要加上之前删除的数量
diffs.forEach((diff) => {
switch (diff.type) {
case actionType.TYPE_DELETE:
aList.splice(diff.index - delCount, 1);
delCount++
break;
case actionType.TYPE_NEW:
aList.splice(diff.index, 0, diff.item);
break;
case actionType.TYPE_REPLACE:
aList.splice(diff.index, 1, diff.item);
break;
default:
break;
}
}) // console.log(aList.join('')) return aList.join('')
}

具体代码参考代码地址

参考资料

Levenshtein distance 编辑距离算法的更多相关文章

  1. Levenshtein Distance (编辑距离) 算法详解

    编辑距离即从一个字符串变换到另一个字符串所需要的最少变化操作步骤(以字符为单位,如son到sun,s不用变,将o->s,n不用变,故操作步骤为1). 为了得到编辑距离,我们画一张二维表来理解,以 ...

  2. 扒一扒编辑距离(Levenshtein Distance)算法

    最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...

  3. 自然语言处理(5)之Levenshtein最小编辑距离算法

    自然语言处理(5)之Levenshtein最小编辑距离算法 题记:之前在公司使用Levenshtein最小编辑距离算法来实现相似车牌的计算的特性开发,正好本节来总结下Levenshtein最小编辑距离 ...

  4. Lucene的FuzzyQuery中用到的Levenshtein Distance(LD)算法

    2019独角兽企业重金招聘Python工程师标准>>> Lucene的FuzzyQuery中用到的Levenshtein Distance(LD)算法 博客分类: java 搜索引擎 ...

  5. 利用Levenshtein Distance (编辑距离)实现文档相似度计算

    1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...

  6. Levenshtein distance 编辑距离

    编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符 实现方案: 1. 找出最长 ...

  7. Levenshtein Distance + LCS 算法计算两个字符串的相似度

    //LD最短编辑路径算法 public static int LevenshteinDistance(string source, string target) { int cell = source ...

  8. C#实现Levenshtein distance最小编辑距离算法

    Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...

  9. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

随机推荐

  1. mybatis中使用包装对象

    在实际的应用中,很多时候我们需要的查询条件都是一个综合的查询条件,因此我们需要对已经存在的实体进行再一次的包装,以方便我们进行查询操作,于是包装对象的作用就很明显了,在这里我举一个简单的例子 1.首先 ...

  2. 备考2019年6月份PMP考试-分享一些考试笔记(二)

    最新比较经典的100道试题,有备考的小伙伴可以练练手,文章末尾附答案. 1     一个项目经理在运作一个数据中心安装项目.他发现相关方很恼火,因为他超出了预算,原因是人员费用要高于原先的计划.另外项 ...

  3. Python datetime模块的其他方法

  4. 如何用maven tycho构建自己的Eclipse RCP应用

    在你写了一个Eclipse插件之后,也许你就会想如何把它变成一个P2的项目或者是一个Java App让大家可以安装到自己的Eclipse上,dangdangdang~~ 这是你就可以利用maven-t ...

  5. 《2019上半年DDoS攻击态势报告》发布:应用层攻击形势依然严峻,海量移动设备成新一代肉鸡

    2019年上半年,阿里云安全团队平均每天帮助用户防御2500余次DDoS攻击,与2018年持平.目前阿里云承载着中国40%网站流量,为全球上百万客户提供基础安全防御.可以说,阿里云上的DDoS攻防态势 ...

  6. GNU的__builtin_popcount函数

    用来计算32位的unsigned int中的1的个数, 其内部实现是根据查表法来计算的.

  7. 【Leetcode 堆、快速选择、Top-K问题 BFPRT】数组中的第K个最大元素(215)

    这道题很强大,引出了很多知识点 题目 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5 ...

  8. 重磅!容器集群监控利器 阿里云Prometheus 正式免费公测

    Prometheus 作为容器生态下集群监控的首选方案,是一套开源的系统监控报警框架.它启发于 Google 的 borgmon 监控系统,并于 2015 年正式发布.2016 年,Prometheu ...

  9. hdu4176 水题

    #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; #def ...

  10. TIJ——Chapter Four:Controlling Execution

    同上一章,本章依然比较简单.基础,因此只是做一些总结性的笔记. 1. 不像C和C++那样(0是假,非零为真),Java不允许用一个数字作为boolean值. 2. C中,为了给变量分配空间,所有变量的 ...