方程:

$\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$

显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一个方程

设$S(i)=\sum\limits_{k=1}^i(x_n-x_k)*p_k$且$A(i)=\sum\limits_{k=1}^ip_k$

则$S(i)-S(j)=\sum\limits_{k=j+1}^i(x_n-x_k)*p_k$,这和原方程很像

最终方程就可以化成

$\Large f(i)=min(f(j)+S(i)-S(j)-(A(i)-A(j))*(x_n-x_i))+c_i$

若对于某个$i$,$j$比$k$优,则

$f(j)+S(i)-S(j)-(A(i)-A(j))*(x_n-x_i)\le f(k)+S(i)-S(k)-(A(i)-A(k))*(x_n-x_i)$

化简得

$\frac{f(j)-S(j)-f(k)+S(k)}{A(j)-A(k)}\le x_i-x_n$

维护一个下凸壳即可

代码

#include<cstdio>
#define LL long long
#define maxn 1000005
#define inf 0x3fffffffffffffff
int x[maxn],p[maxn],c[maxn],que[maxn],s,t=;
LL S[maxn],A[maxn],f[maxn];
LL calc(int i,int j){
if(A[i]==A[j])return inf;
return (f[i]-S[i]-f[j]+S[j])/(A[i]-A[j]);
}
void insert(int i){
while(s<t-&&calc(i,que[t-])<=calc(que[t-],que[t-]))t--;
que[t++]=i;
}
int main(){
int n;scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d%d",x+i,p+i,c+i),A[i]=A[i-]+p[i];
for(int i=;i<=n;i++){
S[i]=S[i-]+1ll*(x[n]-x[i])*p[i];
while(s<t-&&calc(que[s+],que[s])<=x[i]-x[n])s++;
int w=que[s];
f[i]=f[w]+S[i]-S[w]-(A[i]-A[w])*(x[n]-x[i])+c[i];
insert(i);
}
printf("%lld",f[n]);
return ;
}

BZOJ1096 [ZJOI2007]仓库建设——斜率优化的更多相关文章

  1. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  2. [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

  3. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  4. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  5. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  6. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  7. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  8. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  9. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

随机推荐

  1. 源码安装zabbix-oracle

    源码安装zabbix_agent4.0.3   1.源码包下载地址:https://www.zabbix.com/download_sources 2.下载完后上传在任意目录用root用户创建以下脚本 ...

  2. Phpthink入门基础大全(CURD部分)

    [ad code=1 align=center] $data[1]['name'] = ‘阳光雨' $data[1]['email'] = 'sccscc@vip.qq.com' $User>a ...

  3. 5.1_springboot2.x与安全(spring security)

    1.简介 常见的两个安全框架shiro|spring security,这里只介绍spring security; Spring Security是针对Spring项目的安全框架,也是Spring B ...

  4. sql实现取汉字大写首字母

    )) ) AS BEGIN DECLARE @py TABLE( ch ), hz1 ) COLLATE Chinese_PRC_CS_AS_KS_WS, hz2 ) COLLATE Chinese_ ...

  5. 【LGP5127】子异和

    题目 子异和这个名字,真是思博 显然一个集合的子集异或和为,\(2^{|S|-1}\times A\),\(A\)为集合的或和 于是现在的问题变成了树链异或一个数,求树链或和 显然强行拆位是可以做的, ...

  6. Spring注解基础学习总结

    1.依赖注入注解: @Component:Bean注入到Spring容器组件(通用) @Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE):Bean作用域( ...

  7. vim 底行模式 操作命令

    1. 当前设置行号: set nonu    取消行号显示:                    2.   :set number 显示行号     (下次使用就没有了,要设置脚本 vim ~/ . ...

  8. FCC——相关练习

    算法题目1:Seek and Destroy(摧毁数组) 金克斯的迫击炮! 实现一个摧毁(destroyer)函数,第一个参数是待摧毁的数组,其余的参数是待摧毁的值. 帮助资源: Arguments ...

  9. sql(11) sum

    合计函数 (比如 SUM) 常常需要添加 GROUP BY 语句. GROUP BY 语句GROUP BY 语句用于结合合计函数,根据一个或多个列对结果集进行分组.新建表 StudentSS_id G ...

  10. keep, preserve, noprune

    忘了紧急补充