【CQOI2015】选数
题面
Description
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。
你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output
输出一个整数,为所求方案数。
Sample Input
2 2 2 4
Sample Output
3
Hint
【样例解释】
所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
【数据范围】
对于30%的数据,N≤5,H-L≤5
对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5
题目分析
设\(r=\lfloor\frac HK\rfloor,l=\lfloor\frac {L-1}K\rfloor\)
根据套路:\(\displaystyle ans=\sum_{d=1}^r\mu(d)(\lfloor\frac rd\rfloor-\lfloor\frac ld\rfloor)^N\)
由于\(r\)可能很大,需要用杜教筛处理\(\mu\)的前缀和。
杜教筛:
(g*f)(i)&=\sum_{d|i}g(d)f(\frac id)\\
\Rightarrow g(1)S(n)&=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac ni)
\end{split}
\]
其中,\(S(x)\)为\(f()\)的前缀和。
这次,我们的\(f\)为\(\mu\),根据杜教筛的套路,取\(g(x)=1\)。
S(n)=1-\sum_{i=2}^nS(\frac ni)
\end{split}
\]
可以用线性筛预处理一部分\(\mu\)的前缀和,剩下的用杜教筛记忆化搜索即可。
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=1e7+5,M=1e7,mod=1000000007;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int mu[N],prime[N];
bool vis[N];
map<int,int>smu;
int Smu(int x){
if(x<=M)return mu[x];
if(smu[x])return smu[x];
int ret=1;
for(int l=2,r;l<=x;l=r+1){
r=x/(x/l);
ret-=(r-l+1)*Smu(x/l);
}
return smu[x]=ret;
}
LL ksm(LL x,LL k){
LL ret=1;
while(k){
if(k&1)ret=ret*x%mod;
x=x*x%mod,k>>=1;
}
return ret;
}
int main(){
mu[1]=1;
for(int i=2;i<=M;i++){
if(!vis[i])prime[++prime[0]]=i,mu[i]=-1;
for(int j=1;j<=prime[0]&&i*prime[j]<=M;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
mu[i]+=mu[i-1];
}
int n=Getint(),K=Getint(),L=(Getint()-1)/K,R=Getint()/K;
int ans=0;
for(int l=1,r;l<=R;l=r+1){
r=R/(R/l);
if(l<=L)r=min(r,L/(L/l));
ans=(ans+1ll*(Smu(r)-Smu(l-1))*ksm(R/l-L/l,n)%mod)%mod;
}
cout<<(ans+mod)%mod;
return 0;
}
【CQOI2015】选数的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- [CQOI2015]选数(莫比乌斯反演,杜教筛)
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
- CQOI2015 选数
题目 从\([L, H]\)(\(H-L\leq 10^5\))选出\(n\)个整数,使得这些数的最大公约数为\(k\)的方案数. 算法 首先有一个很简单的转化,原问题可以简化为: 从\([\lcei ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
随机推荐
- <router-link :to="...">
一.<router-link :to="..."> to里的值可以是一个字符串路径,或者一个描述地址的对象.例如: // 字符串<router-link to=& ...
- Flutter介绍
1. flutter简介 Flutter是Google使用Dart语言开发的移动应用开发框架,使用一套Dart代码就能快速构建高性能.高保真的ios和Android应用程序, 并且在排版.图标.滚动. ...
- Android笔记之RoundedImageView
参考项目:GcsSloop/rclayout 实现1,利用Canvas.clipPath来实现,适用于任何View(无法去除锯齿效果) package com.bu_ish.blog; import ...
- 【POJ】1251 Jungle Roads
题目链接:http://poj.org/problem?id=1251 题意:n个村庄字母标号,每个字母后跟m个字母,表示该字母到mi的距离.求构建所有村庄道路的最短距离. 题解:最小生成树裸题.注意 ...
- 使用SpringBoot1.4.0的一个坑
时隔半年,再次使用Spring Boot快速搭建微服务,半年前使用的版本是1.2.5,如今看官网最新的release版本是1.4.0,那就用最新的来构建,由于部署环境可能有多套所以使用maven-fi ...
- iOS组件化开发-CocoaPods简介
CocoaPods简介 任何一门开发语言到达一定阶段就会出现第三方的类库管理工具,比如Java的Maven.WEB的Webpack等.在iOS中类库的管理工具-CocoaPods. 利用CocoaPo ...
- javascript小技巧-js小技巧收集(转)
本文转载自:http://blog.csdn.net/ocean20/article/details/2498699 每一项都是js中的小技巧,但十分的实用! 1.document.write(&qu ...
- PHP算法之删除最外层的括号
有效括号字符串为空 ("")."(" + A + ")" 或 A + B,其中 A 和 B 都是有效的括号字符串,+ 代表字符串的连接.例如 ...
- dubbo重连机制会不会造成错误
dubbo在调用服务不成功时,默认会重试2次. Dubbo的路由机制,会把超时的请求路由到其他机器上,而不是本机尝试,所以 dubbo的重试机器也能一定程度的保证服务的质量. 但是如果不合理的配置重试 ...
- Ubuntu Apache vhost不执行php小记
运行环境: Ubuntu : 16.04 PHP: 5.6.36 Apache: 2.4.18 出现/var/www/html 文件夹下的 php文件能够执行 vhost 配置文件的DocumentR ...