1. sigmod函数
函数公式和图表如下图
 

 

在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率。sigmod函数曾经是比较流行的,它可以想象成一个神经元的放电率,在中间斜率比较大的地方是神经元的敏感区,在两边斜率很平缓的地方是神经元的抑制区。
当然,流行也是曾经流行,这说明函数本身是有一定的缺陷的。
1) 当输入稍微远离了坐标原点,函数的梯度就变得很小了,几乎为零。在神经网络反向传播的过程中,我们都是通过微分的链式法则来计算各个权重w的微分的。当反向传播经过了sigmod函数,这个链条上的微分就很小很小了,况且还可能经过很多个sigmod函数,最后会导致权重w对损失函数几乎没影响,这样不利于权重的优化,这个问题叫做梯度饱和,也可以叫梯度弥散。
2) 函数输出不是以0为中心的,这样会使权重更新效率降低。对于这个缺陷,在斯坦福的课程里面有详细的解释。
3) sigmod函数要进行指数运算,这个对于计算机来说是比较慢的。
2.tanh函数
tanh函数公式和曲线如下

 

tanh是双曲正切函数,tanh函数和sigmod函数的曲线是比较相近的,咱们来比较一下看看。首先相同的是,这两个函数在输入很大或是很小的时候,输出都几乎平滑,梯度很小,不利于权重更新;不同的是输出区间,tanh的输出区间是在(-1,1)之间,而且整个函数是以0为中心的,这个特点比sigmod的好。

一般二分类问题中,隐藏层用tanh函数,输出层用sigmod函数。不过这些也都不是一成不变的,具体使用什么激活函数,还是要根据具体的问题来具体分析,还是要靠调试的。
3.ReLU函数
ReLU函数公式和曲线如下
 

ReLU(Rectified Linear Unit)函数是目前比较火的一个激活函数,相比于sigmod函数和tanh函数,它有以下几个优点:
1) 在输入为正数的时候,不存在梯度饱和问题。
2) 计算速度要快很多。ReLU函数只有线性关系,不管是前向传播还是反向传播,都比sigmod和tanh要快很多。(sigmod和tanh要计算指数,计算速度会比较慢)
当然,缺点也是有的:
1) 当输入是负数的时候,ReLU是完全不被激活的,这就表明一旦输入到了负数,ReLU就会死掉。这样在前向传播过程中,还不算什么问题,有的区域是敏感的,有的是不敏感的。但是到了反向传播过程中,输入负数,梯度就会完全到0,这个和sigmod函数、tanh函数有一样的问题。
2) 我们发现ReLU函数的输出要么是0,要么是正数,这也就是说,ReLU函数也不是以0为中心的函数。
4.ELU函数
ELU函数公式和曲线如下图
 

ELU函数是针对ReLU函数的一个改进型,相比于ReLU函数,在输入为负数的情况下,是有一定的输出的,而且这部分输出还具有一定的抗干扰能力。这样可以消除ReLU死掉的问题,不过还是有梯度饱和和指数运算的问题。

5.PReLU函数
PReLU函数公式和曲线如下图
 

PReLU也是针对ReLU的一个改进型,在负数区域内,PReLU有一个很小的斜率,这样也可以避免ReLU死掉的问题。相比于ELU,PReLU在负数区域内是线性运算,斜率虽然小,但是不会趋于0,这算是一定的优势吧。

我们看PReLU的公式,里面的参数α一般是取0~1之间的数,而且一般还是比较小的,如零点零几。当α=0.01时,我们叫PReLU为Leaky ReLU,算是PReLU的一种特殊情况吧。
总体来看,这些激活函数都有自己的优点和缺点,没有一条说法表明哪些就是不行,哪些激活函数就是好的,所有的好坏都要自己去实验中得到。
 
画出激励函数的代码如下
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torch.nn.functional as F
x= torch.linspace(-,,)
x= Variable(x)
x_np=x.data.numpy() y_relu = torch.relu(x).data.numpy()
y_sigmoid =torch.sigmoid(x).data.numpy()
y_tanh = torch.tanh(x).data.numpy()
y_softplus = F.softplus(x).data.numpy() plt.figure(,figsize=(,))
plt.subplot()
plt.plot(x_np,y_relu,c='red',label='relu')
plt.ylim(-,)
plt.legend(loc='best') plt.subplot()
plt.plot(x_np,y_sigmoid,c='red',label='sigmoid')
plt.ylim(-0.2,1.2)
plt.legend(loc='best') plt.subplot()
plt.plot(x_np,y_tanh,c='red',label='tanh')
plt.ylim(-1.2,1.2)
plt.legend(loc='best') plt.subplot()
plt.plot(x_np,y_softplus,c='red',label='softplus')
plt.ylim(-0.2,)
plt.legend(loc='best')
plt.show()

 

莫烦PyTorch学习笔记(三)——激励函数的更多相关文章

  1. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  2. 莫烦pytorch学习笔记(七)——Optimizer优化器

    各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...

  3. 莫烦PyTorch学习笔记(五)——模型的存取

    import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...

  4. 莫烦PyTorch学习笔记(六)——批处理

    1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...

  5. 莫烦pytorch学习笔记(二)——variable

    .简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...

  6. 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )

    CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...

  7. 莫烦 - Pytorch学习笔记 [ 一 ]

    1. Numpy VS Torch #相互转换 np_data = torch_data.numpy() torch_data = torch.from_numpy(np_data) #abs dat ...

  8. 莫烦PyTorch学习笔记(五)——分类

    import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.p ...

  9. 莫烦PyTorch学习笔记(四)——回归

    下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了 import torch from torch.autograd import Variable import torch. ...

随机推荐

  1. HIVE文件

    注册表的本地实体文件, 察看位置,以及映射本地文件到注册表中的位置, HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\hivelist 在这里写 ...

  2. 2019-8-31-dotnet-非泛型-类型-System.Collections.IEnumerable-不能与类型实参一起使用

    title author date CreateTime categories dotnet 非泛型 类型 System.Collections.IEnumerable 不能与类型实参一起使用 lin ...

  3. Java获取文件Content-Type(Mime-Type)

    Java获取文件Content-Type(Mime-Type) 刚好工作中要用到,所以总结一下.推荐使用第一种和第三种,实在不行,也可以去把http://tool.oschina.net/common ...

  4. iptbales无法正常重启

    新主机iptables无法启动关闭和重启 一般是由于没有配文件导致 解决办法 直接touch /etc/sysconfig/iptables 然后就可以正常启动. 备注:一般存在于centos6系列中

  5. [JZOJ3235] 数字八

    题目 题目大意 给你一个二维的图,其中.代表完好,*代表有缺陷. 现在要在图上刻一个数字\(8\),满足: 由两个矩形组成. 每个矩形中必须有空隙在内部,也就是说,至少为\(3*3\)的矩形. 上矩形 ...

  6. WebAPI介绍

    Web API介绍 API的概念 API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访 ...

  7. 模拟求root——cf1067B

    注意最后一轮要单独求一下 且最后只能有一个root #include <bits/stdc++.h> using namespace std; #define MOD 1000000007 ...

  8. VC++ COMBO BOX控件的使用

    1.你在编辑状态下点那个控件的向下的三角形,就出冒出来一个可以调高度的东东.将高度调高,否则在执行时会不能显示下拉选项.   2.为combo box添加选项,在编辑状态下选combo box控件的属 ...

  9. python用类实现装饰器

    一.代码 #利用__call__方法,装饰器的执行流程:当添加装饰器语法糖时,会把语法糖的变量名加()执行,并将被装饰的函数名传入.所以当类加()执行时,执行了__init__,产生的对象就是被装饰的 ...

  10. 同一个tomcat 两个项目 互相访问接口方法

    package com.qif.xdqdm.util; import com.alibaba.fastjson.JSONObject; import java.io.*; import java.ne ...