1. sigmod函数
函数公式和图表如下图
 

 

在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率。sigmod函数曾经是比较流行的,它可以想象成一个神经元的放电率,在中间斜率比较大的地方是神经元的敏感区,在两边斜率很平缓的地方是神经元的抑制区。
当然,流行也是曾经流行,这说明函数本身是有一定的缺陷的。
1) 当输入稍微远离了坐标原点,函数的梯度就变得很小了,几乎为零。在神经网络反向传播的过程中,我们都是通过微分的链式法则来计算各个权重w的微分的。当反向传播经过了sigmod函数,这个链条上的微分就很小很小了,况且还可能经过很多个sigmod函数,最后会导致权重w对损失函数几乎没影响,这样不利于权重的优化,这个问题叫做梯度饱和,也可以叫梯度弥散。
2) 函数输出不是以0为中心的,这样会使权重更新效率降低。对于这个缺陷,在斯坦福的课程里面有详细的解释。
3) sigmod函数要进行指数运算,这个对于计算机来说是比较慢的。
2.tanh函数
tanh函数公式和曲线如下

 

tanh是双曲正切函数,tanh函数和sigmod函数的曲线是比较相近的,咱们来比较一下看看。首先相同的是,这两个函数在输入很大或是很小的时候,输出都几乎平滑,梯度很小,不利于权重更新;不同的是输出区间,tanh的输出区间是在(-1,1)之间,而且整个函数是以0为中心的,这个特点比sigmod的好。

一般二分类问题中,隐藏层用tanh函数,输出层用sigmod函数。不过这些也都不是一成不变的,具体使用什么激活函数,还是要根据具体的问题来具体分析,还是要靠调试的。
3.ReLU函数
ReLU函数公式和曲线如下
 

ReLU(Rectified Linear Unit)函数是目前比较火的一个激活函数,相比于sigmod函数和tanh函数,它有以下几个优点:
1) 在输入为正数的时候,不存在梯度饱和问题。
2) 计算速度要快很多。ReLU函数只有线性关系,不管是前向传播还是反向传播,都比sigmod和tanh要快很多。(sigmod和tanh要计算指数,计算速度会比较慢)
当然,缺点也是有的:
1) 当输入是负数的时候,ReLU是完全不被激活的,这就表明一旦输入到了负数,ReLU就会死掉。这样在前向传播过程中,还不算什么问题,有的区域是敏感的,有的是不敏感的。但是到了反向传播过程中,输入负数,梯度就会完全到0,这个和sigmod函数、tanh函数有一样的问题。
2) 我们发现ReLU函数的输出要么是0,要么是正数,这也就是说,ReLU函数也不是以0为中心的函数。
4.ELU函数
ELU函数公式和曲线如下图
 

ELU函数是针对ReLU函数的一个改进型,相比于ReLU函数,在输入为负数的情况下,是有一定的输出的,而且这部分输出还具有一定的抗干扰能力。这样可以消除ReLU死掉的问题,不过还是有梯度饱和和指数运算的问题。

5.PReLU函数
PReLU函数公式和曲线如下图
 

PReLU也是针对ReLU的一个改进型,在负数区域内,PReLU有一个很小的斜率,这样也可以避免ReLU死掉的问题。相比于ELU,PReLU在负数区域内是线性运算,斜率虽然小,但是不会趋于0,这算是一定的优势吧。

我们看PReLU的公式,里面的参数α一般是取0~1之间的数,而且一般还是比较小的,如零点零几。当α=0.01时,我们叫PReLU为Leaky ReLU,算是PReLU的一种特殊情况吧。
总体来看,这些激活函数都有自己的优点和缺点,没有一条说法表明哪些就是不行,哪些激活函数就是好的,所有的好坏都要自己去实验中得到。
 
画出激励函数的代码如下
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torch.nn.functional as F
x= torch.linspace(-,,)
x= Variable(x)
x_np=x.data.numpy() y_relu = torch.relu(x).data.numpy()
y_sigmoid =torch.sigmoid(x).data.numpy()
y_tanh = torch.tanh(x).data.numpy()
y_softplus = F.softplus(x).data.numpy() plt.figure(,figsize=(,))
plt.subplot()
plt.plot(x_np,y_relu,c='red',label='relu')
plt.ylim(-,)
plt.legend(loc='best') plt.subplot()
plt.plot(x_np,y_sigmoid,c='red',label='sigmoid')
plt.ylim(-0.2,1.2)
plt.legend(loc='best') plt.subplot()
plt.plot(x_np,y_tanh,c='red',label='tanh')
plt.ylim(-1.2,1.2)
plt.legend(loc='best') plt.subplot()
plt.plot(x_np,y_softplus,c='red',label='softplus')
plt.ylim(-0.2,)
plt.legend(loc='best')
plt.show()

 

莫烦PyTorch学习笔记(三)——激励函数的更多相关文章

  1. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  2. 莫烦pytorch学习笔记(七)——Optimizer优化器

    各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...

  3. 莫烦PyTorch学习笔记(五)——模型的存取

    import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...

  4. 莫烦PyTorch学习笔记(六)——批处理

    1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...

  5. 莫烦pytorch学习笔记(二)——variable

    .简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...

  6. 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )

    CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...

  7. 莫烦 - Pytorch学习笔记 [ 一 ]

    1. Numpy VS Torch #相互转换 np_data = torch_data.numpy() torch_data = torch.from_numpy(np_data) #abs dat ...

  8. 莫烦PyTorch学习笔记(五)——分类

    import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.p ...

  9. 莫烦PyTorch学习笔记(四)——回归

    下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了 import torch from torch.autograd import Variable import torch. ...

随机推荐

  1. MySQL数据库中,将一个字段的值分割成多条数据显示

    本文主要记录如何在MySQL数据库中,将一个字符串分割成多条数据显示. 外键有时是以字符串的形式存储,例如 12,13,14 这种,如果以这种形式存储,则不能直接与其他表关联查询,此时就需要将该字段的 ...

  2. 剑指offer——15剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  3. Jmeter----请求依赖之边界值提取器

    填写左边界和右边界 引用变量名就是要存储的变量名词

  4. SSH的两种登录方式以及配置

    前言 SSH简介 Secure Shell(SSH) 是由 IETF(The Internet Engineering Task Force) 制定的建立在应用层基础上的安全网络协议.它是专为远程登录 ...

  5. Jmeter压测快速体验

    前言 最近在看neo4j相关的官网文档以及一些调优参数,同时也学了下Jmeter,为了测试下neo4j服务的性能,虽然不是专业搞测试的,但是我觉得每个优秀的开发者都应该学会主动压测自己服务和代码的性能 ...

  6. 2019-8-31-C#-通过编程的方法在桌面创建回收站快捷方式

    title author date CreateTime categories C# 通过编程的方法在桌面创建回收站快捷方式 lindexi 2019-08-31 16:55:58 +0800 201 ...

  7. 在Linux(centos)下,安装Apache和PHP环境

    1001  ll /opt/lampp/modules/ 1002  history | grep httpd 1003  vim /etc/httpd/conf/httpd.conf 1004  v ...

  8. NIO教程笔记

    NIO操作文件部分详解 NIO——New IO,也可以理解为非阻塞IO(Non Blocking IO).可以替代旧IO,更高效的支持读写(文件读写,网络读写).但文件操作都是阻塞的.学习NIO首先要 ...

  9. MAMP 安装 php 扩展

    1.官网下载所对应的php 版本http://php.net/get/php-5.3.29.tar.gz/from/a/mirror 2.解压 找到需要的扩展目录 例如我要的是shmopcd ~/Do ...

  10. mac 10.9 install cocoapods issue

    If you've installed the OS X Mavericks Beta and you're having ruby issues like this: /System/Library ...