【题解】NOIP2017 提高组 简要题解

小凯的疑惑(数论)

不讲

时间复杂度

大力模拟

奶酪

并查集模板题

宝藏

最优解一定存在一种构造方法是按照深度一步步生成所有的联通性。

枚举一个根,随后设\(dp(i,j)\)表示最大深度为\(i\)且当前联通的集合是\(j\)的最小答案。预处理\(dis(u,j)\)表示当\(j\)集合内的点都存在时,\(u\)到这些点的最短的最短边。

转移:

\[dp(i,j)=\min \{dp(i-1,j),dp(i-1,s)+(i-1)\times \sum_{u\in j-s} dis(u,s)\}
\]

你会问这样不能保证连边的时候深度为\(i-1\)啊,可能更小啊?

但是这样不会影响最优解。

//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue> using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
} const int maxn=13;
const int inf=0x3f3f3f3f;
int e[maxn][maxn];
int dp[maxn][1<<maxn];
int dis[maxn][1<<maxn];
int n,m,rt;
int cnt=0; int main(){
memset(e,0x3f,sizeof e);
memset(dp,0x3f,sizeof dp);
n=qr(); m=qr();
for(int t=1,t1,t2;t<=m;++t)
t1=qr(),t2=qr(),e[t1][t2]=e[t2][t1]=min(e[t1][t2],qr());
const int K=(1<<n)-1;
for(int t=0;t<=K;++t)
for(int g=1;g<=n;++g){
if(t<<1>>g&1) continue;
int f=inf;
for(int k=1;k<=n;++k)
if(t<<1>>k&1) f=min(f,e[g][k]);
dis[g][t]=f;
}
int ans=inf;
for(int rt=1;rt<=n;++rt){
memset(dp,0x3f,sizeof dp);
dp[1][1<<rt>>1]=0;
for(int t=2;t<=n;++t){
for(int i=1;i<=K;++i){
dp[t][i]=dp[t-1][i];
for(int l=i;l;--l&=i){
int c=l^i,ret=0;
if(dp[t-1][c]>=dp[t][i])continue;
bool f=0;
for(int g=1;g<=n;++g)
if(l<<1>>g&1){
if(dis[g][c]>=inf){ret=inf; break;}
else ret+=dis[g][c];
if(dp[t-1][c]+(t-1)*ret>=dp[t][i]) {f=1;break;}
}
if(f)continue;
dp[t][i]=min((ll)dp[t][i],dp[t-1][c]+(t-1ll)*ret);
}
}
ans=min(ans,dp[t][K]);
}
ans=min(ans,dp[1][K]);
}
printf("%d\n",ans);
return 0;
}

列队

不会

好像会线段树动态开点做法,没写

写了

//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define mid ((l+r)>>1)
using namespace std; typedef long long ll;
const int maxn=3e5+5,maxm=6e6+5;
int n,m,q,rt[maxn],ls[maxm],rs[maxm],seg[maxm],cnt;
ll id[maxn<<1];
vector<ll> e[maxn];
int que(const int&k,const int&l,const int&r,int&pos){
if(!pos)pos=++cnt,seg[pos]=r-l+1;
--seg[pos];
if(l==r)return l;
int g=ls[pos]?seg[ls[pos]]:mid-l+1;
return g>=k?que(k,l,mid,ls[pos]):que(k-g,mid+1,r,rs[pos]);
}
int main(){
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin>>n>>m>>q;
for(int t=1;t<=n;++t) id[t]=1ll*t*m;
for(int t=n+1,N=n+q,M=m+q,x,y,ans;q--;cout<<id[t++]<<'\n'){
cin>>x>>y;
if(y==m) id[t]=id[ans=que(x,1,N,rt[0])];
else id[t]=(ans=que(y,1,M,rt[x]))<m?(x-1ll)*m+ans:e[x][ans-m], e[x].push_back(id[que(x,1,N,rt[0])]);
}
return 0;
}

【题解】NOIP2017 提高组 简要题解的更多相关文章

  1. 【题解】NOIP2016 提高组 简要题解

    [题解]NOIP2016 提高组 简要题解 玩具迷题(送分) 用异或实现 //@winlere #include<iostream> #include<cstdio> #inc ...

  2. NOIP2017提高组day2T1题解(奶酪)

    题目链接:奶酪 这道题还是很水的,在下拿了满分. 并没有用什么高级的算法,我讲一下基本思路. 我们把每个洞都视为一个节点. 我们读入相关数据后,就先进行预处理,通过每个节点的信息和题目的规定,建立一张 ...

  3. NOIP2017[提高组] 宝藏 题解

    解析 我们观察范围可以发现n非常的小,(一般来说不是搜索就是状压dp)所以说对于这题我们可以用记忆化搜索或者dp,我们发现起点不同那么最终答案也就不同,也就是说答案是跟起点有关的,于是我们便可以想到去 ...

  4. 题解 [NOIP2017 提高组]宝藏

    传送门 这是蓝书上状压的例题啊,怎么会出现在模拟赛里 不过就算原题我也没把握写对 核心思路: 先令\(dp[s]\)为当前状态为\(s\)时的总花费最小值,\(cnt[s][i]\)为这个方案中由根节 ...

  5. [NOIp2017提高组]列队

    [NOIp2017提高组]列队 题目大意 一个\(n\times m(n,m\le3\times10^5)\)的方阵,每个格子里的人都有一个编号.初始时第\(i\)行第\(j\)列的编号为\((i-1 ...

  6. JZOJ 5196. 【NOIP2017提高组模拟7.3】B

    5196. [NOIP2017提高组模拟7.3]B Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  7. JZOJ 5197. 【NOIP2017提高组模拟7.3】C

    5197. [NOIP2017提高组模拟7.3]C Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  8. JZOJ 5195. 【NOIP2017提高组模拟7.3】A

    5195. [NOIP2017提高组模拟7.3]A Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed Limits   Goto Pro ...

  9. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

随机推荐

  1. oracle函数 nls_charset_name(n1)

    [功能]返回字符集名称参应id值 [参数]n1,数值型 [返回]字符型 sql> select nls_charset_name(852) from dual; nls_char ------- ...

  2. ListOfOpenSourcePrograms

    ListOfOpenSourcePrograms Contents Desktop Applications Communication Engineering Educational Financi ...

  3. lavarel 响应宏

    宏的概念 计算机里的宏是批量处理的意思.比如我们在进行文本编辑的时候,打错字会有回退的功能——control+z:但是这是我们的键盘操作,计算机在进行处理的时候是不能理解的,他必须对最近两次操作进行比 ...

  4. PHP 面试题二

    1.抓取远程图片到本地,你会用什么函数? fsockopen, A 2.用最少的代码写一个求3值最大值的函数. function get_max($a,$b,$c) { return ($a > ...

  5. webpack学习(三)配置loader

    首先搞清楚两个问题: 1 什么是loader? 2 为啥要用各种loader 答: loader 就是各种打包规则,为什么要用是显而易见的,因为webpack还没智能到给它什么文件都能打包,对于js文 ...

  6. angular 点击事件阻止冒泡及默认行为

    经常遇到场景:多层级元素绑定ng-click 事件,则底层元素的点击事件存在冒泡现象,怎么解决? 类似原生JS ,只是语法稍有不同,如下: 阻止冒泡 $event.stopPropagation() ...

  7. 浅谈使用spring security中的BCryptPasswordEncoder方法对密码进行加密与密码匹配

    浅谈使用springsecurity中的BCryptPasswordEncoder方法对密码进行加密(encode)与密码匹配(matches) spring security中的BCryptPass ...

  8. url查找参数

    function GetUrlParam(paraName) { var url = document.location.toString(); var arrObj = url.split(&quo ...

  9. vue-learning:15 - js - data

    data data属性是一个对象,存放最纯粹的数据,这些数据可以在模板template.计算属性computed.方法methods.监听器watch.过滤器filters.生命周期函数中使用,并且可 ...

  10. vue-learning:29 - component - 组件三大API之三:slot

    组件三大API之三: slot <slot>标签 v-slot指令 普通插槽 有默认值的插槽 具名插槽 作用域插槽 v-slot是Vue 2.6.0引入的一个新语法指令,目的是统一之前sl ...