2016.10.13 20:28

  很久没有写随笔了,自打小宝出生后就没有写过新的文章。数次来到博客园,想开始新的学习历程,总是被各种琐事中断。一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版本的提测,每次到了晚上就感觉很疲惫,另一方面确实是自己对自己最近有些放松,没有持续地学习。很庆幸今天能在一个忙碌的工作日后,开始着手这篇文章。

  来到大数据前,我对大数据可以说是一无所知。诸如Hadoop、Hive等名词仅仅处于“听过”的阶段,完全不知道其作用。大数据的概念真的很多,想真正理解必须从实践中慢慢体会,否则则永远只能停留在字面意思。

一、Hadoop

  相信大部分人都听过Hadoop,但是都不知道它到底是干什么的,有什么作用。Hadoop其实可以分为两块:HDFS和MapReduce。

  HDFS:Hadoop Distributed File System,是一个分布式文件系统,它的主要作用是为海量数据提供存储,并提供“流式“访问文件系统中的数据。存储在HDFS中的数据文件是结构化的,比如日志文件。

  MapReduce:看过廖雪峰的Python教程的人应该都对Map和Reduce有一定了解,这里的MapReduce其实就是一样的操作(如果没看过,想了解Map、Reduce过程可以访问《廖雪峰Python教程-map/reduce》)。它主要提供了对海量数据的计算。

二、Hive

  在实践中,数据开发工程师们想对数据进行计算就要写一个MapReduce程序,而这显然需要较大的成本,对于那些不擅长开发的人想简单地查询数据更是抬高了较大的门槛。于是Hive就是为了解决这个问题而生的。它将存储在HDFS中的数据文件(例如日志),通过建立一种映射关系映射成一张数据库表,即Hive表。Hive中有一个模块“metastore”,,一般使用mysql,就是专门用来存储该映射后的数据库表的表结构信息,例如表名、字段名、分区、属性(是否外部表、分区表)等,没有具体的数据。业界也称它为”元数据“。然后真实的数据可以通过load data转换为hive表中的数据,或者通过add partition的方式建立数据映射,从而Hive就提供了一种通过SQL语句查询的方式来计算HDFS中的实际数据文件。

  当一条Hive SQL语句被执行时,Hive有一套映射工具(metastore,一般存放在mysql、derby中),它会对应地将SQL语句转化为MapReduce任务,把sql中的表、字段映射成HDFS中的文件、列,然后去执行对HDFS原始数据文件的计算。

  其实这些内容似乎在所有关于Hadoop、Hive的地方都能看到,字面上理解也并不难。但是如果你是一个真正的初次接触大数据的人的话,我想你会可能也跟我刚开始一样,对它们的理解仅仅是停留在字面。这里举一个例子来解释上面这些字面真正的意思。

  比如我有一个存在HDFS中的access.log日志文件,其内容如下:

假如想统计ip为10.165.152.123的登录记录,如果通过MapReduce去做的话,可能的代码实现方法是:首先解析日志文件,每行去查找是否包含“10.165.152.123”,如果是则再通过正则匹配去取出后面的相关内容(Map);然后对每行的结果进行汇总计算(Reduce)。

  Hive的做法:

  1. 先任意取一条日志,例如10.165.152.123 - - [13/Oct/2016:14:55:06 +0800] "GET /index.html HTTP/1.0" 200 7992 2124,将其中的列映射成字段,如:10.165.152.123对应ip,13/Oct/2016:14:55:06对应time,GET /index.html HTTP/1.0对应method(请求方法),200对应result(返回码),7992对应bytes(字节数),2124对应response_time(响应时间)。

  2. 然后相对应地,选定一个数据库(比如znilog)下,创建一张表名为tbl_accesslog的记录字段名、是否分区(比如按date分区)、属性(是否外部表)的hive表。

  需要注意的是,hive表的实际存储位置也是在hdfs上,比如这种情况下默认的hdfs路径可能就是/warehouser/znilog.db/tbl_accesslog。这个路径就是内部表(也称管理表)的hdfs存储路径。如果是外部表,用户可以自己设定外部表的location。  

3. 对于内部表,我们需要将数据通过load data的方式,将原始数据文件中的数据通过映射的方式,转化为映射后的数据(一般按列存放)存入内部表下。

4. 对于外部表,我们可以直接通过add partition的方式将原始hdfs路径下的数据文件,映射到外部表下。当删除表时,Hive默认存储位置的数据会被删除,但是外部表的数据不会被删除。

   5. 这样我们就有了Hive表,以及Hive表包含的元数据信息(存在metastore中,一般是mysql),Hive表中包含转化后的数据信息,我们可以直接通过Hive SQL语句(select * from tbl_accesslog where ip='10.165.152.123')来获取我们想要的信息。

   

初识Hadoop、Hive的更多相关文章

  1. 初识Hadoop

    第一部分:              初识Hadoop 一.             谁说大象不能跳舞 业务数据越来越多,用关系型数据库来存储和处理数据越来越感觉吃力,一个查询或者一个导出,要执行很长 ...

  2. 初识Hadoop入门介绍

    初识hadoop入门介绍 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. < ...

  3. 大数据测试之初识Hadoop

    大数据测试之初识Hadoop POPTEST老李认为测试开发工程师是面向测试的开发,也就是说,写代码就是为完成测试任务服务的,写自动化测试(性能自动化,功能自动化,安全自动化,接口自动化等等)的cas ...

  4. 细细品味大数据--初识hadoop

    初识hadoop 前言 之前在学校的时候一直就想学习大数据方面的技术,包括hadoop和机器学习啊什么的,但是归根结底就是因为自己太懒了,导致没有坚持多长时间,加上一直为offer做准备,所以当时重心 ...

  5. Hive创建表格报【Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException】引发的血案

    在成功启动Hive之后感慨这次终于没有出现Bug了,满怀信心地打了长长的创建表格的命令,结果现实再一次给了我一棒,报了以下的错误Error, return code 1 from org.apache ...

  6. FineReport中hadoop,hive数据库连接解决方案

    1. 描述 Hadoop是个很流行的分布式计算解决方案,Hive是基于hadoop的数据分析工具.一般来说我们对Hive的操作都是通过cli来进行,也就是Linux的控制台,但是,这样做本质上是每个连 ...

  7. hive 使用where条件报错 java.lang.NoSuchMethodError: org.apache.hadoop.hive.ql.ppd.ExprWalkerInfo.getConvertedNode

    hadoop 版本 2.6.0 hive版本 1.1.1 错误: java.lang.NoSuchMethodError: org.apache.hadoop.hive.ql.ppd.ExprWalk ...

  8. hadoop+hive使用中遇到的问题汇总

    问题排查方式  一般的错误,查看错误输出,按照关键字google 异常错误(如namenode.datanode莫名其妙挂了):查看hadoop($HADOOP_HOME/logs)或hive日志 h ...

  9. Hadoop Hive基础sql语法

     目录 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的 ...

  10. Sqoop是一款开源的工具,主要用于在HADOOP(Hive)与传统的数据库(mysql、oracle...)间进行数据的传递

    http://niuzhenxin.iteye.com/blog/1706203   Sqoop是一款开源的工具,主要用于在HADOOP(Hive)与传统的数据库(mysql.postgresql.. ...

随机推荐

  1. 【.net 深呼吸】设置序列化中的最大数据量

    欢迎收看本期的<老周吹牛>节目,由于剧组严重缺钱,故本节目无视频无声音.好,先看下面一个类声明. [DataContract] public class DemoObject { [Dat ...

  2. NodeJs之log4js

    log4js log4js是一个管理,记录日志的工具. 其实与morgan的作用类似. 安装 npm install -g log4js log4js的6个日志级别 分别是:trace(蓝色).deb ...

  3. ABP文档 - Javascript Api - Message

    本节内容: 显示信息 确认 Message API给用户显示一个信息,或从用户那里获取一个确认信息. Message API默认使用sweetalert实现,为使sweetalert正常工作,你应该包 ...

  4. Java 为值传递而不是引用传递

    ——reference Java is Pass by Value and Not Pass by Reference 其实这个问题是一个非常初级的问题,相关的概念初学者早已掌握,但是时间长了还是容易 ...

  5. 基于DFA敏感词查询的算法简析

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 项目中需要对敏感词做一个过滤,首先有几个方案可以选择: a.直 ...

  6. [干货来袭]MSSQL Server on Linux预览版安装教程(先帮大家踩坑)

    前言 昨天晚上微软爸爸开了全国开发者大会,会上的内容,我就不多说了,园子里面很多.. 我们唐总裁在今年曾今透漏过SQL Server love Linux,果不其然,这次开发者大会上就推出了MSSQL ...

  7. ASP.NET MVC原理

    仅此一文让你明白ASP.NET MVC原理   ASP.NET MVC由以下两个核心组成部分构成: 一个名为UrlRoutingModule的自定义HttpModule,用来解析Controller与 ...

  8. 【SAP业务模式】之ICS(七):IDOC配置

    这是ICS业务模式系列的最后一篇了,主要讲解IDOC的配置. 一.指定EDI传输的供应商逻辑地址 事务代码:WEL1 注意:上面逻辑地址是生产公司+内部客户.有以下两种情形: 1.如果内部客户都是纯数 ...

  9. Android中ListView实现图文并列并且自定义分割线(完善仿微信APP)

    昨天的(今天凌晨)的博文<Android中Fragment和ViewPager那点事儿>中,我们通过使用Fragment和ViewPager模仿实现了微信的布局框架.今天我们来通过使用Li ...

  10. Atitit.软件开发的三层结构isv金字塔模型

    Atitit.软件开发的三层结构isv金字塔模型 第一层,Implements 层,着重与功能的实现.. 第二次,spec层,理论层,设计规范,接口,等.流程.方法论 顶层,val层,价值观层,原则, ...