lca总结+树上差分
lca
lca简称最近公共祖先——简介在此,不过多赘述
这里主要写的是倍增算法,oi-wiki上用的是vector,由于本人不会,只会用链表,所以这里就放链表的代码了
例题
加一个数组按倍增数组的方式存距离即可
题解——点击查看代码
#include<bits/stdc++.h>
#define int long long
const int maxn=1e6+10;
using namespace std;
int n,m,root,nxt[maxn<<2],to[maxn<<2],head[maxn<<2],tot,val[maxn<<2];
int cnt,dep[maxn<<2],f[maxn][20],dis[maxn][20];
void add(int x,int y,int z)
{
to[++tot]=y;
val[tot]=z;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int u,int fa,int dist)
{
dis[u][0]=dist;
f[u][0]=fa;
dep[u]=dep[fa]+1;
for(int i=1;(1<<i)<=dep[u];i++)
{
f[u][i]=f[f[u][i-1]][i-1];
dis[u][i]=dis[u][i-1]+dis[f[u][i-1]][i-1];
}
for(int i=head[u];i;i=nxt[i])
{
int y=to[i];
if(y==fa) continue;
dfs(y,u,val[i]);
}
}
int lca(int x,int y)
{
int res=0;
if(dep[x]>dep[y]) swap(x,y);
for(int i=17;i>=0;i--)
{
if(dep[x]+(1<<i)<=dep[y]) res+=dis[y][i],y=f[y][i];
}
if(x==y) return res;
for(int i=17;i>=0;i--)
{
if(f[y][i]!=f[x][i])
{
res+=dis[x][i];
res+=dis[y][i];
x=f[x][i];
y=f[y][i];
}
}
return dis[x][0]+dis[y][0]+res;
}
signed main()
{
scanf("%d%d",&n,&m);
char aa[2];
int x,y,z;
for(int i=1;i<=m;i++)
{
scanf("%lld%lld%lld %s ",&x,&y,&z,&aa[1]);
add(x,y,z);
add(y,x,z);
}
dfs(1,0,0);
int k;
scanf("%lld",&k);
for(int i=1;i<=k;i++)
{
scanf("%lld%lld",&x,&y);
printf("%lld\n",lca(x,y));
}
return 0;
}
树上差分
主要用途是在树上的一些统计计数操作,对树上两点路径的操作用的
主要思想
dfs深搜实现,在两端结点计数,在深搜回溯时把计数的操作从子节点传递到父节点,用下面这个图理解一下
假设我们有这样一张图,我们要在6和8两个节点间的路径加一,那我们在用树上差分时,在两端+1,会发现它们的最近公共
祖先2及以上祖先都加了2,我们的目的是让2加1,2的祖先不变,则我们需要在2处减一,2的父亲处再减一即可
题解
#include<bits/stdc++.h>
#define int long long
const int maxn=1e6+10;
using namespace std;
int n,m,root,head[maxn<<2],tot,sum;
int cnt,dep[maxn<<2],f[maxn][21],tg[maxn],a[maxn];
bool vis[maxn<<2];
struct tree{int to,val,nxt;}e[maxn<<2];
void add(int x,int y)
{
e[++tot].to=y;
e[tot].nxt=head[x];
head[x]=tot;
}
void dfs1(int u,int fa)
{
vis[u]=1;
for(int i=1;(1<<i)<=dep[u];i++)
{
f[u][i]=f[f[u][i-1]][i-1];
}
for(int i=head[u];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]||y==fa) continue;
f[y][0]=u;
dep[y]=dep[u]+1;
dfs1(y,u);
}
}
int lca(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=20;i>=0;i--)
{
if(dep[x]>=dep[y]+(1<<i)) x=f[x][i];
}
if(x==y) return x;
for(int i=20;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
void dfs(int u)
{
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y])continue;
dfs(y);
tg[u]+=tg[y];
}
}
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
int x,y;
for(int i=1;i<n;i++)
{
scanf("%lld%lld",&x,&y);
add(x,y);
add(y,x);
}
dfs1(1,0);
for(int i=1;i<n;i++)
{
tg[a[i]]++;
tg[a[i+1]]++;
tg[ lca(a[i],a[i+1]) ]--;
tg[f[ lca(a[i],a[i+1]) ][0]]--;
/*
en~~,神奇的东西,相邻的加1,但从a[2]到a[3]时a[2]不用加1,这就导致除了首尾糖果都 多加了1,但到最后一个糖果时不用拿,所以只有第一个位置的糖果是对的
所以让第一个糖果数加1,最后输出时都减一就好了
*/
}
memset(vis,0,sizeof vis);
dfs(1);
tg[a[1]]++;
for(int i=1;i<=n;i++) printf("%lld\n",tg[i]-1);
return 0;
}
你已完成新手教程,下面开启困难模式
书上差分计数变形
题解——二分加树上差分
#include<bits/stdc++.h>
const int maxn=1e6+10;
using namespace std;
int n,m,root,head[maxn],tot,a[maxn],b[maxn];
int cnt,dep[maxn],f[maxn][21],dis[maxn][21],sum[maxn],l,r,ans;
bool vis[maxn];
struct tree{int to,val,nxt;}e[maxn<<2];
struct node{int a,b,anc,val;}le[maxn<<2];
void add(int x,int y,int z)
{
e[++tot].to=y;
e[tot].nxt=head[x];
e[tot].val=z;
head[x]=tot;
}
void dfs(int u,int fa)
{
vis[u]=1;
for(int i=1;(1<<i)<=dep[u];i++)
{
f[u][i]=f[f[u][i-1]][i-1];
dis[u][i]=dis[u][i-1]+dis[f[u][i-1]][i-1];
}
for(int i=head[u];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]||y==fa) continue;
f[y][0]=u;
b[y]=i;
dis[y][0]=e[i].val;
dep[y]=dep[u]+1;
dfs(y,u);
}
}
int lca(int x,int y)
{
if(dep[x]>dep[y]) swap(x,y);
for(int i=20;i>=0;i--)
{
if(dep[x]+(1<<i)<=dep[y]) y=f[y][i];
}
if(x==y) return y;
for(int i=20;i>=0;i--)
{
if(f[y][i]!=f[x][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[y][0];
}
int solve(int x,int y)
{
int res=0;
if(dep[x]<dep[y])swap(x,y);
for(int i=17;i>=0;i--)
{
if(dep[x]>=dep[y]+(1<<i)) res+=dis[x][i],x=f[x][i];
}
if(x==y)return res;
for(int i=17;i>=0;i--)
{
if(f[y][i]!=f[x][i])
{
res+=dis[x][i]+dis[y][i];
x=f[x][i];
y=f[y][i];
}
}
return dis[x][0]+dis[y][0]+res;
}
void update(int now,int fa)
{
for(int i=head[now];i;i=e[i].nxt)
{
if(e[i].to!=fa)
{
update(e[i].to,now);
sum[now]+=sum[e[i].to];
}
}
}
bool check(int x)
{
int cnt=0,dec=0;
memset(sum,0,sizeof sum);
for(int i=1;i<=n;i++)
{
if(le[i].val>x)
{
cnt++;
sum[le[i].a]++;
sum[le[i].b]++;
sum[le[i].anc]-=2;
dec=max(dec,le[i].val-x);
}
}
update(1,1);
for(int i=1;i<=n;i++)
if(sum[i]==cnt&&e[b[i]].val>=dec) return 1;
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
int x,y,z;
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
dfs(1,0);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
le[i]={x,y,lca(x,y),solve(x,y)};
r=max(r,le[i].val);
}
r++;
while(l<r)
{
int mid=(l+r)>>1;
if(check(mid))ans=r=mid;
else l=mid+1;
}
printf("%d",ans);
return 0;
}
树上差分加线段树合并
题解
#include<bits/stdc++.h>
#define lid m[id].ls
#define rid m[id].rs
const int maxn=1e5+10;
using namespace std;
int n,t,len,head[maxn],nxt[maxn<<1],to[maxn<<1],tot,cnt;
int rt[maxn],sum,s[maxn*80],ans[maxn];
struct node{int ls,rs,sum;}m[maxn*80];
int dep[maxn],f[maxn][21];
inline void add(int x,int y)
{
to[++cnt]=y;
nxt[cnt]=head[x];
head[x]=cnt;
}
inline void addm(int x,int y)
{
add(x,y);
add(y,x);
}
inline void push(int id)
{
if(!lid){m[id].sum=m[rid].sum,s[id]=s[rid];return ;}
if(!rid){m[id].sum=m[lid].sum,s[id]=s[lid];return ;}
m[id].sum=max(m[lid].sum,m[rid].sum);
s[id]=m[lid].sum>=m[rid].sum?s[lid]:s[rid];
}
inline void merge(int &a,int b,int l,int r)
{
if(!b) return;
if(!a){ a=b;return ;}
if(l==r){ m[a].sum+=m[b].sum;return ;}
int mid=(l+r)>>1;
merge(m[a].ls,m[b].ls,l,mid),merge(m[a].rs,m[b].rs,mid+1,r);
push(a);
}
inline void insert(int &id,int l,int r,int x,int y)
{
if(!id)id=++tot;
if(l==r)
{
m[id].sum+=y;
s[id]=x;
return;
}
int mid=(l+r)>>1;
if(x<=mid)insert(lid,l,mid,x,y);
else insert(rid,mid+1,r,x,y);
push(id);
}
inline void dfs(int u,int fa)
{
for(int i=1;(1<<i)<=dep[u];i++)
f[u][i]=f[f[u][i-1]][i-1];
for(int i=head[u];i;i=nxt[i])
{
int y=to[i];
if(y==fa)continue;
f[y][0]=u;
dep[y]=dep[u]+1;
dfs(y,u);
}
}
inline int lca(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
for(int i=20;i>=0;i--)
if(dep[y]+(1<<i)<=dep[x])x=f[x][i];
if(x==y)return x;
for(int i=20;i>=0;i--)
{
if(f[y][i]!=f[x][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
void as(int u,int fa)
{
for(int i=head[u];i;i=nxt[i])
{
int y=to[i];
if(y==fa)continue;
as(y,u);
merge(rt[u],rt[y],1,maxn-10);
}
ans[u]=s[rt[u]];
if(!m[rt[u]].sum) ans[u]=0;
}
int main(){
scanf("%d%d",&n,&t);
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
addm(x,y);
}
dfs(1,0);
for(int i=1;i<=t;i++)
{
int a,b,c,d;
scanf("%d%d%d",&a,&b,&c);
d=lca(a,b);
insert(rt[a],1,maxn,c,1),insert(rt[b],1,maxn,c,1);
insert(rt[d],1,maxn,c,-1);
insert(rt[f[d][0]],1,maxn,c,-1);
}
as(1,0);
for(int i=1;i<=n;i++)
printf("%d\n",ans[i]);
return 0;
}
lca总结+树上差分的更多相关文章
- 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 【题解】POJ 3417 Network(倍增求LCA+DP+树上差分)
POJ3417:http://poj.org/problem?id=3417 思路 我们注意到由“主要边”构成一颗树 “附加边”则是非树边 把一条附加边(x,y)加入树中 会与树上x,y之间构成一个环 ...
- [luogu2680] 运输计划 (lca+二分+树上差分)
传送门 Description Input Output 一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间. Sample Input 6 3 1 2 3 1 6 4 3 1 7 4 3 ...
- [POJ3417]Network(LCA,树上差分)
Network Description Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried ...
- 洛谷P2680 运输计划 [LCA,树上差分,二分答案]
题目传送门 运输计划 Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间, 这 n?1 条航道连通了 L 国的所 ...
- 【BZOJ3626】LCA(树上差分,树链剖分)
题意:给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给 ...
- 【NOIP2016】天天爱跑步 题解(LCA+桶+树上差分)
题目链接 题目大意:给定一颗含有$n$个结点的树,每个结点有一个权值$w$.给定$m$条路径,如果一个点与路径的起点的距离恰好为$w$,那么$ans[i]++$.求所有结点的ans. 题目分析 暴力的 ...
- [luogu P3128][USACO15DEC]Max Flow [LCA][树上差分]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- 树上差分 (瞎bb) [树上差分][LCA]
做noip2015的运输计划写了好久好久写不出来 QwQ 于是先来瞎bb一下树上差分 混积分 树上差分有2个常用的功能: (1)记录从点i到i的父亲这条路径走过几次 (2)将每条路径(s,t ...
- [填坑]树上差分 例题:[JLOI2014]松鼠的新家(LCA)
今天算是把LCA这个坑填上了一点点,又复习(其实是预习)了一下树上差分.其实普通的差分我还是会的,树上的嘛,也是懂原理的就是没怎么打过. 我们先来把树上差分能做到的看一下: 1.找所有路径公共覆盖的边 ...
随机推荐
- #交互,分类讨论#CF1292E Rin and The Unknown Flower
题目传送门 分析 先尝试锁定一个字母,显然询问 \(CH,CO,CC\) 会比直接询问 \(C\) 更优,虽然牺牲了最后一个位置是否为 \(C\) 的查询. 同理,询问 \(HH,OH,CH\) 会比 ...
- #模拟#B 字串修改
题目 有两个字符串\(s,t\),其中\(s\)只包含小写字母以及 *,\(t\)只包含小写字母. 你可以进行任意多次操作,每次选择\(s\)中的一个 *,将它修改为任意多个(可以是0个)它的前一个字 ...
- OpenHarmony创新赛人气投票活动,最佳人气作品由你来定!
12月1日至12月15日 十大入围作品线上投票激战正酣 最佳人气作品,由你来定! 投票链接:https://forums.openharmony.cn/forum.php?mod=viewth ...
- 【直播回顾】战码先锋第五期:深入理解OpenHarmony系统启动,轻松踏上设备软件开发之旅
6月14日晚上19点,战"码"先锋第五期直播 <深入理解OpenHarmony系统启动,轻松踏上设备软件开发之旅> ,在OpenHarmony社群内成功举行. 本期 ...
- Docker学习路线13:部署容器
部署容器是使用Docker和容器化管理应用程序更高效.易于扩展和确保跨环境一致性性能的关键步骤.本主题将为您概述如何部署Docker容器以创建和运行应用程序. 概述 Docker容器是轻量级.可移植且 ...
- centos部署Django三:编写相关配置文件及启动服务
1. 进入到项目的根目录,编写 uwsgi.xml 配置文件 *:centos用的不是 uwsgi.ini,而是 uwsgi.xml <uwsgi> <socket>127.0 ...
- 在HarmonyOS上实现ArkTS与H5的交互
介绍 本篇Codelab主要介绍H5如何调用原生侧相关功能,并在回调中获取执行结果.以"获取通讯录"为示例分步讲解JSBridge桥接的实现. 相关概念 Web组件:提供具有网 ...
- el-tree选中子级时默认选中父级(角色授权)
问题1:选中子级时默认选中父级 <el-tree :data="menuData" show-checkbox default-expand-all node-key=&qu ...
- MD5前端vue加密
Vue 前端md5加密用户注册时将加密后的密码发送给后端存储当登陆的时候,再将加密后的密码和数据库中加密的密码相匹配.npm: https://www.npmjs.com/package/crypto ...
- 力扣27(java&python)-移除元素(简单)
题目: 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度. 不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入 ...