bzoj4458: GTY的OJ
题目大意:给定一棵带点权的有根树,同时给定L,R,要求找M条链,每条链满足以下条件的情况下,要求所有链权和最大:
1、两两不相同(可以包含/相交等)
2、节点数在[L,R]间
3、其中一个端点的深度必须是整条链所有点深度的最小值(原谅我实在不会表达……)(形象地说,就是直上直下)
感觉和NOI某原题什么钢琴有点像
当一条链的下端点确定时,上端点的选择范围就是一条链,也就是说,我们可以求出每个点到根的点权和val[u]存入主席树,这样就可以求 以指定点为下端点 权第k大的链了。
用堆来维护 所有下端点当前权最大的链,每取出一个当前最大值,假设它是其下端点权第k大的链,就在主席树里找这个下端点权第k+1大的链
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#define ll long long
#define N 500005
#define M 500005
#define INF (1e9) using namespace std;
inline int read(){
int ret=0;char ch=getchar();
bool flag=0;
while (ch<'0'||ch>'9'){
flag=ch=='-';
ch=getchar();
}
while ('0'<=ch&&ch<='9'){
ret=ret*10-48+ch;
ch=getchar();
}
return flag?-ret:ret;
} int n;
int fa[N],f[N][22],fl[N],fr[N],deep[N];
int a[N],val[N];
int need,L,R;
int root[N]; void init(){
n=read()+1;fa[2]=read()+1;
for (int i=3;i<=n;++i) fa[i]=read()+1;
for (int i=2;i<=n;++i) a[i]=read();
fa[1]=a[1]=0;
need=read();L=read();R=read()+1;//interval->[L,R)
} struct SegmentTree{
struct STnode{
int sum,ls,rs;
} t[N*33];
int size;
void clear(){size=t[0].sum=t[0].ls=t[0].rs=0;}
void modify(int &x,int L,int R,int pos){
t[++size]=t[x];
x=size;
++t[x].sum;
if (L==R) return;
int mid=(L+R)/2;
if (L+R<0) --mid;
if (pos<=mid) modify(t[x].ls,L,mid,pos);
else modify(t[x].rs,mid+1,R,pos);
}
int qmink(int x,int y,int L,int R,int k){
if (L==R) return L;
int tmp=t[t[x].ls].sum-t[t[y].ls].sum,mid=(L+R)/2;
if (L+R<0) --mid;
if (k<=tmp) return qmink(t[x].ls,t[y].ls,L,mid,k);
else return qmink(t[x].rs,t[y].rs,mid+1,R,k-tmp);
}
} st; void precompute(){
val[0]=a[0]=deep[0]=fa[0]=0;
for (int i=1;i<=n;++i){
val[i]=val[fa[i]]+a[i];
deep[i]=deep[fa[i]]+1;
f[i][0]=fa[i];
}
memset(f[0],0,sizeof(f[0]));
for (int k=1;k<=20;++k)
for (int i=1;i<=n;++i)
f[i][k]=f[f[i][k-1]][k-1]; st.clear();root[0]=0;
for (int i=1;i<=n;++i){
fl[i]=fr[i]=i;
for (int k=0;k<=20;++k){
if ((L&(1<<k))>0) fl[i]=f[fl[i]][k];
if ((R&(1<<k))>0) fr[i]=f[fr[i]][k];
} st.modify(root[i]=root[fa[i]],-INF,INF,val[i]);
}
} struct HeapNode{
int pos,value,k;
HeapNode(){}
HeapNode(int _pos,int _value,int _k):pos(_pos),value(_value),k(_k){}
};
inline bool operator <(const HeapNode &u,const HeapNode &v){
return u.value<v.value;
}
priority_queue<HeapNode> h; void work(){
while (!h.empty()) h.pop();
for (int i=1;i<=n;++i)
if (deep[fl[i]]-deep[fr[i]])
h.push(HeapNode(i,val[i]-st.qmink(root[fl[i]],root[fr[i]],-INF,INF,1),1));
ll ans=0;
while (need--){
HeapNode now=h.top();
h.pop();
ans+=(ll)now.value;
int u=fl[now.pos],v=fr[now.pos];
if (deep[u]-deep[v]>now.k)
h.push(HeapNode(now.pos,val[now.pos]-st.qmink(root[u],root[v],-INF,INF,now.k+1),now.k+1));
}
printf("%lld\n",ans);
} int main(){
init();
precompute();
work();
return 0;
}
bzoj4458: GTY的OJ的更多相关文章
- 【贪心 计数 倍增】bzoj4458: GTY的OJ
倍增写挂调了半个晚上 Description 身为IOI金牌的gtyzs有自己的一个OJ,名曰GOJ.GOJ上的题目可谓是高质量而又经典,他在他的OJ里面定义了一个树形的分类目录,且两个相同级别的目录 ...
- bzoj4458 GTY的OJ (优先队列+倍增)
把超级钢琴放到了树上. 这次不用主席树了..本来以为会好写一点没想到细节更多(其实是树上细节多) 为了方便,对每个点把他的那个L,R区间转化成两个深度a,b,表示从[a,b)选一个最小的前缀和(到根的 ...
- 【BZOJ4458】GTY的OJ
题面 Description 身为IOI金牌的gtyzs有自己的一个OJ,名曰GOJ.GOJ上的题目可谓是高质量而又经典,他在他的OJ里面定义了一个树形的分类目录,且两个相同级别的目录是不会重叠的.比 ...
- 【BZOJ4458】GTY的OJ(树上超级钢琴)
点此看题面 大致题意: 给你一棵树,让你求出每一个节点向上的长度在\([l,r]\)范围内的路径权值和最大的\(m\)条路径的权值总和. 关于此题的数列版本 此题的数列版本,就是比较著名的[BZOJ2 ...
- 2018.10.29 NOIP2018模拟赛 解题报告
得分: \(70+60+0=130\)(\(T3\)来不及打了,结果爆\(0\)) \(T1\):简单的求和(点此看题面) 原题: [HDU4473]Exam 这道题其实就是上面那题的弱化版,只不过把 ...
- NOIP2018赛前停课集训记(10.24~11.08)
前言 为了不久之后的\(NOIP2018\),我们的停课从今天(\(Oct\ 24th\))起正式开始了. 本来说要下周开始的,没想到竟提早了几天,真是一个惊喜.毕竟明天有语文考试.后天有科学考试,逃 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- Online Judge(OJ)搭建(第一版)
搭建 OJ 需要的知识(重要性排序): Java SE(Basic Knowledge, String, FileWriter, JavaCompiler, URLClassLoader, Secur ...
- [BZOJ3729]Gty的游戏
[BZOJ3729]Gty的游戏 试题描述 某一天gty在与他的妹子玩游戏.妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子移动到父节点,询问将某个节点的子树中的石子移动 ...
随机推荐
- MD5工具类
package com.liu.hellomavenweb.util; import java.security.MessageDigest; /** * * @author 刘楠 * */ publ ...
- iOS 系统根据导航栏和状态栏自动修改布局
问题 条件:1.有一个全屏大小的带导航的controller 2.隐藏导航栏,最顶上还会留出状态栏的位置,而不是全屏显示 解决方法 self.automaticallyAdjustsScrollVie ...
- MySQL的表使用
-- 创建表CREATE TABLE teacher( id INT, NAME VARCHAR(20))-- 查看所有表SHOW TABLES; DESC student; DROP TABLE s ...
- 7 COMPELLING REASONS YOU NEED TO START THE BUSINESS YOU’VE ALWAYS WANTED
原文链接:http://lesseesadvocate.com/7-compelling-reasons-need-start-business-youve-always-wanted/ Don’t ...
- android开发之onCreate( )方法详解
这里我们只关注一句话:This is where you should do all of your normal static set up.其中我们只关注normal static,normal: ...
- ubuntu su sudo sudo–i 区别
sudo : 暂时切换到超级用户模式以执行超级用户权限,提示输入密码时该密码为当前用户的密码,而不是超级账户的密码.不过有时间限制,Ubuntu默认为一次时长15分钟. su : 切换到某某用户模式, ...
- 解决虚拟机VMware安装CentOS7.0识别不到网卡
由于Vmware虚拟网卡和linux兼容问题导致驱动无法正常安装,默认的网卡类型不兼容. 解决方法 找到我们的Vmware虚拟机文件夹,将VMware 虚拟机配置 (.vmx),追加一条设置我们网卡类 ...
- 浏览器对于常见HTTP状态码的反应
在我们向服务器发送一个HTTP请求时,会经历tcp连接(三次握手),发送HTTP请求,服务器返回HTTP响应,浏览器对响应中的状态码进行分析判断,来确定请求是否成功,是否成功得到我们需要的信息. 那么 ...
- 【2016-10-17】【坚持学习】【Day8】【工厂方法模式】
工厂方法模式又叫工厂模式,虚拟构造器模式 定义: 工厂父类负责定义创建产品对象的公共接口,而工厂子类则负责生成具体的产品对象目的是将产品类的实例化操作延迟到工厂子类中完成,即通过工厂子类来确定究竟应该 ...
- Appium学习实践(五)遇到的坑(记录自己工作中遇到的坑以及解决方案,不定时更新)
1.错误截图,有时候测试用例执行错误的话,相对于复杂的log,一张错误截图也许能更明确哪里出的问题(当然有时,截图+log还是最好了) 坑:本来是想测试用例fail的时候捕获异常来执行截图操作,但是由 ...