补题链接:Here

1514A. Perfectly Imperfect Array

题意:给定长度为 \(n\) 的 \(a\) 序列,请问是否存在子序列积不存在平方根

思路:子序列的话,一个元素也是子序列,那么只要存在某个元素不存在平方根即可

void solve() {
int n;
cin >> n;
bool f = 1;
while (n--) {
int x, tmp;
cin >> x;
tmp = sqrt(x);
if (tmp * tmp != x) f = 0;
}
cout << (!f ? "YES\n" : "NO\n");
}

1514B. AND 0, Sum Big

题面解释了那么多,本质就是 qpow(n,k) % mod

using ll      = long long;
const int mod = 1e9 + 7;
ll qpow(ll a, ll b) {
ll ans = 1;
a %= mod;
for (; b; b >>= 1, a = a * a % mod)
if (b & 1) ans = ans * a % mod;
return ans;
}
void solve() {
ll n, k;
cin >> n >> k;
cout << qpow(n, k) << "\n";
}

1514C. Product 1 Modulo N

题意:

现在,您得到Baby Ehab的第一句话:“给定整数n,找到乘积为1模n的最长子序列 \([1,2,…,n-1]\)。” 请解决问题。

如果可以通过删除某些(可能是全部)元素从a获得b,则序列b是数组a的子序列。 空子序列的乘积等于1。

思路:

首先想到 \(n = 2\) 时,仅有一种情况就是 \(1\)

然后在考虑 \(2\le n\) 时,维护 \(ans\) 。如果 \(i\) 与 \(ans\) 互质则可以加入序列。

最后如果 \(ans = n - 1\) 最后一个数肯定不符合需要删去

int n;
void solve() {
cin >> n;
if (n == 2) {
cout << "1\n1";
return;
}
ll ans = 1;
vector<int> v;
for (int i = 1; i <= n; ++i) {
if (__gcd(n, i) == 1) {
v.push_back(i);
ans = ans * i % n;
}
}
if (ans == n - 1) v.pop_back();
cout << v.size() << "\n";
for (int x : v) cout << x << " ";
}

1514D. Cut and Stick

涉及区间修改查询问题肯定是线段树(树状数组)了

#include <bits/stdc++.h>
using namespace std;
using LL = long long;
constexpr LL mod = 1000000007;
constexpr int maxn = 300000 + 1;
struct Node {
int cur, cnt;
Node operator*(const Node &p) const {
if (cur == p.cur) return {cur, cnt + p.cnt};
if (cnt >= p.cnt) return {cur, cnt - p.cnt};
return {p.cur, p.cnt - cnt};
}
} t[maxn << 2];
int a[maxn];
vector<int> p[maxn];
#define ls (v << 1)
#define rs (ls | 1)
#define tm ((tl + tr) >> 1)
void build(int v, int tl, int tr) {
if (tl == tr)
t[v] = {a[tm], 1};
if (tl < tr) {
build(ls, tl, tm);
build(rs, tm + 1, tr);
t[v] = t[ls] * t[rs];
}
}
Node query(int v, int tl, int tr, int L, int R) {
if (tl >= L and tr <= R) return t[v];
Node res = {0, 0};
if (L <= tm) res = res * query(ls, tl, tm, L, R);
if (R > tm) res = res * query(rs, tm + 1, tr, L, R);
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, q;
cin >> n >> q;
for (int i = 1; i <= n; i += 1) cin >> a[i];
for (int i = 1; i <= n; i += 1) p[a[i]].push_back(i);
build(1, 1, n);
for (int i = 1; i <= q; i += 1) {
int L, R;
cin >> L >> R;
auto v = query(1, 1, n, L, R);
int x = R - L + 1;
int y = v.cur;
int z = upper_bound(p[y].begin(), p[y].end(), R) - lower_bound(p[y].begin(), p[y].end(), L);
cout << max(2 * z - x, 1) << "\n";
}
return 0;
}

Codeforces Round #716 (Div. 2) A ~ D 个人题解的更多相关文章

  1. Codeforces Round #609 (Div. 2)前五题题解

    Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...

  2. Codeforces Round #716 (Div. 2), problem: (B) AND 0, Sum Big位运算思维

    & -- 位运算之一,有0则0 原题链接 Problem - 1514B - Codeforces 题目 Example input 2 2 2 100000 20 output 4 2267 ...

  3. Codeforces Round #556 (Div. 2) D. Three Religions 题解 动态规划

    题目链接:http://codeforces.com/contest/1150/problem/D 题目大意: 你有一个参考串 s 和三个装载字符串的容器 vec[0..2] ,然后还有 q 次操作, ...

  4. Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学

    题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...

  5. Codeforces Round #624 (Div. 3) F. Moving Points 题解

    第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...

  6. Codeforces Round #677 (Div. 3) E、G题解

    E. Two Round Dances #圆排列 题目链接 题意 \(n\)(保证偶数)个人,要表演一个节目,这个节目包含两种圆形舞蹈,而每种圆形舞蹈恰好需要\(n/2\)个人,每个人只能跳一种圆形舞 ...

  7. Codeforces Round#402(Div.1)掉分记+题解

    哎,今天第一次打div1 感觉头脑很不清醒... 看到第一题就蒙了,想了好久,怎么乱dp,倒过来插之类的...突然发现不就是一道sb二分吗.....sb二分看了二十分钟........ 然后第二题看了 ...

  8. Codeforces Round #604 (Div. 2) 练习A,B题解

    A题 链接 思路分析: 因为只需要做到相邻的不相同,利用三个不同的字母是肯定可以实现的, 所以直接先将所有的问号进行替换,比如比前一个大1,如果与后面的冲突,则再加一 代码(写的很烂): #inclu ...

  9. Codeforces Round #599 (Div. 2)的简单题题解

    难题不会啊…… 我感觉写这个的原因就是因为……无聊要给大家翻译题面 A. Maximum Square 简单题意: 有$n$条长为$a_i$,宽为1的木板,现在你可以随便抽几个拼在一起,然后你要从这一 ...

  10. Codeforces Round #635 (Div. 2)部分(A~E)题解

    虽然打的是div1,但最后半小时完全处于挂机状态,不会做1C,只有个 \(O(n^3)\) 的想法,水了水论坛,甚至看了一下div2的AB,所以干脆顺便写个div2的题解吧,内容看上去还丰富一些(X) ...

随机推荐

  1. CentOS6-详细启动流程

    CentOS6的启动流程 第一步:硬件启动阶段 本步的流程: 1. 打开电源: 2. POST自检: 3. BIOS逐一排查设备启动顺序,如果是硬盘启动,读取硬盘的MBR的BootLoader.(这里 ...

  2. 基于 Echarts实现可视化数据大屏展示?

    当涉及到使用Echarts实现可视化数据大屏展示时,以下是一份非常详细的介绍说明. 第一部分:介绍Echarts Echarts是一个由百度开源的基于JavaScript的可视化图表库.它支持多种图表 ...

  3. IDEA安装与配置教程

    一.下载并安装IDEA 1.下载 1.官网: 下载 IntelliJ IDEA (这里以Windows系统为例,其他系统类似) 2.安装 1.下载完成后,直接点击安装包安装,即可. 2.开始安装,然后 ...

  4. vertx的学习总结2

    一.什么是verticle verticle是vertx的基本单元,其作用就是封装用于处理事件的技术功能单元  (如果不能理解,到后面的实战就可以理解了) 二.写一个verticle 1. 引入依赖( ...

  5. [ABC265B] Explore

    Problem Statement Takahashi is exploring a cave in a video game. The cave consists of $N$ rooms arra ...

  6. C++学习笔记一:windows系统配置C++开发环境(VS code+g++/clang++)

    1.下载vscode 官网下载地址: https://code.visualstudio.com/ 安装时选择把软件加入到环境变量中这个选项 2.打开vscode,安装c/c++扩展插件 3.下载gc ...

  7. JXNU acm选拔赛 最小的数

    最小的数 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submissi ...

  8. PTA 函数与递归部分题目讲解及思路

    7-1 判断素数 题目分析 题目输入n个数,判断其是否为质数 对于判断质数,只需要满足从2开始遍历的每一个数一直到√n均无法被n整除即可 关于为什么只要到√n呢? 因为n = √n * √n,因此其最 ...

  9. nginx-下载安装与配置

    nginx下载 从官网下载,使用命令在linux下载即可,这个是目前稳定版最新的1.24.0版本,如果想要用旧版本直接修改版本号即可(旧版本我用的是1.12.2) 下载需要使用wget命令,默认是没有 ...

  10. Pikachu漏洞靶场 敏感信息泄露

    敏感信息泄露 概述 由于后台人员的疏忽或者不当的设计,导致不应该被前端用户看到的数据被轻易的访问到. 比如: 通过访问url下的目录,可以直接列出目录下的文件列表; 输入错误的url参数后报错信息里面 ...