傅里叶变换是一种数学变换,它可以将一个函数或信号转换为另一个函数或信号,它可以将时域信号转换为频域信号,也可以将频域信号转换为时域信号。
在很多的领域都有广泛的应用,例如信号处理、通信、图像处理、计算机科学、物理学、生物学等。

它最大的功能是能够分析和提取信号的特征,将复杂的信号分解为简单的信号。
有人甚至说傅里叶变换是一种可以让我们看透世界本质的变换,将纷繁世界的表象中的本质显现出来。

1. 简介

从数学的角度来推导傅里叶变换的话,会涉及到很多的基本的数学概念,比如正交基,级数,正弦余弦函数等等。
这里主要是为了看懂和使用傅里叶变换,了解傅里叶变换中的主要概念即可,
Scipy库会帮助我们处理其中的细节。

举例来说,对于现实中遇到的如下一个原始信号(一般都是非周期性且无规律的):

这样的信号,可以是声音,可以是气温变化,可以是心电图,甚至可以是股票涨跌情况等等。

原始的信号变化复杂,而且大部分情况都看不出什么规律。
这时,傅里叶变换就能发挥作用了,它能够将复杂无序的信号转换为一系列简单规则的信号。
比如上面的信号转换之后变成下面6个简单的信号

另外,傅里叶变换是可逆的,它也能够将变换后的多个简单的信号还原成原始的复杂信号。

2. fft 模块

Scipy中处理傅里叶变换有2个子模块:fftfftpack
fftpack即将被淘汰,所以尽量使用fft模块。

fft模块中,傅里叶变换的主要函数有:

函数名 说明
fft 计算一维离散傅里叶变换
ifft 计算一维离散傅里叶逆变换
fft2 计算二维离散傅里叶变换
ifft2 计算二维离散傅里叶逆变换
fftn 计算N维离散傅里叶变换
ifftn 计算N维离散傅里叶逆变换

2.1. 变换示例

创建一个复合的信号:

import numpy as np
import matplotlib.pyplot as plt # 生成 0~8pi 之间100个点
x = np.linspace(0, 8*np.pi, 100) # 随便生成6个不同的正弦信号
y1 = np.sin(x)
y2 = 4*np.sin(2*x)
y3 = 2*np.sin(4*x)
y4 = 8*np.sin(0.3*x)
y5 = 6*np.sin(0.8*x)
y6 = 0.5*np.sin(5*x) y = y1 + y2 + y3 + y4 + y5 + y6 plt.plot(x, y)
plt.show()

下面通过一维傅里叶变换,看看得到的结果:

from scipy import fft as spfft

fft_result = spfft.fft(y)
print(fft_result.shape)
# 运行结果
(100,) fft_result[1:11]
# 运行结果(显示前10个,总共100个)
array([ 99.548317 -0.j , 273.43743482-274.69892934j,
-10.91586207 +66.24943608j, 167.24328363-151.29814008j,
-57.93543536 +49.80593353j, -30.50244642 +56.21303872j,
-19.99077861 +37.24642604j, -13.54997057 +21.30562857j,
35.119202 -161.91923934j, -17.17382544 +41.98143084j]) fft_result[-10:]
# 运行结果(显示后10个,总共100个)
array([-13.61273919 -29.66475047j, -17.17382544 -41.98143084j,
35.119202 +161.91923934j, -13.54997057 -21.30562857j,
-19.99077861 -37.24642604j, -30.50244642 -56.21303872j,
-57.93543536 -49.80593353j, 167.24328363+151.29814008j,
-10.91586207 -66.24943608j, 273.43743482+274.69892934j])

观察快速傅里叶转换之后得到的结果:

  1. 转换的结果中,每个元素都是复数
  2. 前10个元素中,除去第一个,剩下的元素和后10个元素相比,实部相同,虚部相反

傅里叶变换之后,可以得到两个描述信号的图形:

  1. 频谱图:各个频率的波的振幅信息
  2. 相位图:各个频率的波的相位信息,相位就是波在特定时间所处的位置

频谱信息可以通过 np.abs 方法计算得出:

fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
data = np.abs(fft_result)
ax1.plot(data)
ax1.set_title("双边频谱图") ax2 = fig.add_subplot(122)
data = np.abs(fft_result[:50])
ax2.plot(data)
ax2.set_title("单边频谱图") plt.show()

相位信息可以通过 np.angle 方法计算得出:

fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
data = np.angle(fft_result)
ax1.plot(data)
ax1.set_title("双边相位图") ax2 = fig.add_subplot(122)
data = np.angle(fft_result[:50])
ax2.plot(data)
ax2.set_title("单边相位图") plt.show()

从这两个图中就能得变换后各个频率的信号的频率,振幅,相位信息。

2.2. 逆变换示例

逆变换就是将变换后的信号还原为原始信号。

因为傅里叶变换并没有任何信息的损失,所以逆变换之后可以看出信号的波形没有任何改变。

data = spfft.ifft(fft_result)

# 逆变换之后,忽略虚部的数字
plt.plot(x, np.real(data))
plt.show()

3. 应用

最后,利用傅里叶变换,我们试着做一个改变声音效果的小例子。

首先,读取一段音频,Scipy就可以直接读取wav文件。

import scipy.io.wavfile as wav

# 读取音频,返回采样率和采样的数值
rate, all_samples = wav.read("/path/to/fft-test.wav")
print(rate)
print(all_samples[1000:1010])
# 运行结果
16000
[122 133 149 151 165 151 160 159 155 151] plt.plot(all_samples)
plt.show()


音频文件是网上随便找的一段英语对话。

接着,对读取的信号做傅里叶变换,观察变换后的结果:

dd = spfft.rfft(all_samples)
plt.plot(np.abs(dd))
plt.show()


注意,这里用了 rfft函数,不是之前的fft函数,
两者的区别在于fft的结果是复数,会形成对称的双边图,就像上一节介绍的那样。
rfft的结果是实数,且是单边的,如上图所示。

这两个函数根据实际情况选择使用,都可以对信号进行傅里叶变换。
因为我后面的处理不需要双边的信息,所以这里用 rfft 函数来做傅里叶变换。

3.1. 处理一

第一种处理,我尝试把频率20000HZ以上的信号都去掉,看看音频的效果有什么变化。

new_data = dd.copy()
# 20000HZ以上频率的数据设为0
new_data[20000:] = 0 fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
ax1.plot(np.abs(new_data)) ax2 = fig.add_subplot(122)
ax2.plot(np.abs(dd)) plt.show()

处理之后的信号逆变换为原始信号,再保存为wav音频文件,看音频的变化效果。

new_data = spfft.irfft(new_data)
new_data = np.rint(new_data)
new_data = new_data.astype("int16") wav.write("/path/to/fft-test-1.wav", rate, new_data)

转换后的音频和原音频比,听起来声音更加闷一些,模糊一些。

3.2. 处理二

这次与处理一相反,把20000HZ以下的信号去掉。

new_data = dd.copy()
# new_data[20000:] = 0
new_data[:20000] = 0 fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
ax1.plot(np.abs(new_data)) ax2 = fig.add_subplot(122)
ax2.plot(np.abs(dd)) plt.show()

然后同样的把信号逆变换回去,并保存为wav文件。

new_data = spfft.irfft(new_data)
new_data = np.rint(new_data)
new_data = new_data.astype("int16") wav.write("/path/to/fft-test-2.wav", rate, new_data)

这次的声音听起来很遥远,像是长途电话的感觉。

4. 总结

本篇主要介绍了傅里叶变换是什么,以及如何使用Scipy库来进行傅里叶变换。
目的是了解和使用傅里叶变换,而不是从数学角度去推导傅里叶变换。

最后的小例子虽然简单,但见微知著,仅仅删除了一些频率的信号,声音效果就随之变化。
如果把不同声音的文件中,影响音调,音色的频率分析出来,就可以制作一个变声器,
把自己的声音变成男声女声,儿童老人等等。

进一步,用二维傅里叶变换的话,可以分析图像,把图像中的主要频率找出来,
深入下去既可以做图像修复,也可以做图像识别等等。

Scipy库中还有多维傅里叶变换,可以分析现实情况下更加复杂的信号。

5. 附录

文中用到的完整代码(ipynb格式)和一个音频文件,可以从下面的地址下载:
scipy-fft-sample.zip:
https://url11.ctfile.com/f/45455611-910542660-6d7e0f?p=6872
(访问密码: 6872)

【scipy 基础】--傅里叶变换的更多相关文章

  1. SciPy fftpack(傅里叶变换)

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  2. SciPy 基础功能

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  3. python-数据处理的包Numpy,scipy,pandas,matplotlib

    一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...

  4. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  10. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. 「学习笔记」FHQ-treap

    FHQ-treap,即无旋 treap,又称分裂合并 treap,支持维护序列,可持久化等特性. FHQ-treap 有两个核心操作,分裂 与 合并.通过这两个操作,在很多情况下可以比旋转 treap ...

  2. Nextcloud允许不被信任的域访问 取消 trusted domains

    在服务器部署了Nextcloud,由于测试需要,经常从不同的地址访问,但是每次访问都要把域名添加到受信任域,反反复复修改也挺麻烦,暂时又没找到通配符或者禁用的方法. 不过网上提供了一个替代方法,动态生 ...

  3. React 前端应用中快速实践 OpenTelemetry 云原生可观测性(SigNoz/K8S)

    OpenTelemetry 可用于跟踪 React 应用程序的性能问题和错误.您可以跟踪从前端 web 应用程序到下游服务的用户请求.OpenTelemetry 是云原生计算基金会(CNCF)下的一个 ...

  4. Linux 软件包:man pages

    有时候,man ls 发现没有帮助文档,可以快递打开浏览器检索 "man ls" . # yum list | grep man | grep pages gl-manpages. ...

  5. Blazor实战——Known框架多表增删改查

    多表增删改查示例 本章介绍学习多张表增.删.改.查功能如何实现,下面以销货出库单作为示例,该业务栏位如下: 销货出库单栏位 销货单号.销货日期.状态.客户.备注 销货出库单明细栏位 商品编码.商品名称 ...

  6. Bootstrap使用方法

    中文文档:https://www.bootcss.com/ 使用方式: 1.选择对应的文档:  2.网站会自动跳转,一般选择Bootstrap3中文文档:  3.点击入门,下拉找到基础模板,复制代码到 ...

  7. 超详细的mysql总结(基本概念、DDL、DML)

    开发中存在着各种数据,比如用户的个人信息.商品详情.购买记录,这些数据都要以一定的方式储存,如果以文本的形式储存,每一次获取都要读取文件,如果信息有修改则需要直接修改文本,大量的数据会需要保存大量的文 ...

  8. 时序数据库 InfluxDB 第一篇 安装部署

    使用场景: 最近项目上遇到大数据存储的问题,一个IOT融合项目,涉及到大量的工控监测数据存储.当前存储到关系库中的数据已经达到2亿条了.做了很多优化,查询还是很慢.便想着是否有更好的解决方案. 了解到 ...

  9. Feign的超时时间如何设置,我研究了4种情况

    大家好,我是三友~~ 今天来聊一聊前段时间看到的一个面试题,也是在实际项目中需要考虑的一个问题,Feign的超时时间如何设置? Feign的超时时间设置方式并不固定,它取决于Feign在项目中是如何使 ...

  10. Vue 框架下提升加载速度的一些实战经验分享

    现在前端的框架有很多,甚至两只手已经数不过来,当然也完全没必要全部都学,还是应该深入的学习一两个被广泛使用的就好.其实我和大部分同学的想法一致,认为最值得我们深究的还是主流的 Vue 和 React. ...