【Maxwell】02 Kafka配置
一、快速搭建Kafka环境
基于Docker容器创建(供参考):
https://www.cnblogs.com/mindzone/p/15608984.html
这里简要写一下命令:
# 拉取zk + kafka的镜像
docker pull wurstmeister/zookeeper
docker pull wurstmeister/kafka # 创建zk容器
docker run -d --name zookeeper -p 2181:2181 -t wurstmeister/zookeeper # 创建kafka容器
docker run -d --name kafka \
-p 9092:9092 \
-e KAFKA_BROKER_ID=0 \
-e KAFKA_ZOOKEEPER_CONNECT=Linux主机IP:2181 \
-e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://Linux主机IP:9092 \
-e KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
-t wurstmeister/kafka # 检查kafka运行情况
docker ps
测试Topic消息是否正常生产和消费(注意终端是阻塞的,需要多开终端窗口测试):
#窗口1 生产
[root@centos-linux ~]# docker exec -it kafka /bin/bash
bash-4.4# kafka-console-producer.sh --broker-list localhost:9092 --topic topic名称 #窗口2 消费
[root@centos-linux ~]# docker exec -it kafka /bin/bash
bash-4.4# kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic topic名称 --from-beginning # 样例
bash-4.4# kafka-console-producer.sh --broker-list localhost:9092 --topic producer
bash-4.4# kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic producer --from-beginning
二、配置Maxwell 绑定Kafka
1、方式一,简单命令参数启动:
cd /usr/local/maxwell-1.29.2
./bin/maxwell \
--user='maxwell' \
--password='123456' \
--host='192.168.2.225' \
--port='3308' \
--producer=kafka \
--kafka.bootstrap.servers=localhost:9092 \
--kafka_topic=producer \
--jdbc_options='useSSL=false&serverTimezone=Asia/Shanghai'
Maxwell运行成功的输出:
[root@localhost maxwell-1.29.2]# ./bin/maxwell \
> --user='maxwell' \
> --password='123456' \
> --host='192.168.2.225' \
> --port='3308' \
> --producer=kafka \
> --kafka.bootstrap.servers=localhost:9092 \
> --kafka_topic=producer \
> --jdbc_options='useSSL=false&serverTimezone=Asia/Shanghai'
Using kafka version: 1.0.0
14:13:50,533 INFO Maxwell - Starting Maxwell. maxMemory: 247332864 bufferMemoryUsage: 0.25
14:13:50,783 INFO ProducerConfig - ProducerConfig values:
acks = 1
batch.size = 16384
bootstrap.servers = [localhost:9092]
buffer.memory = 33554432
client.id =
compression.type = snappy
connections.max.idle.ms = 540000
enable.idempotence = false
interceptor.classes = null
key.serializer = class org.apache.kafka.common.serialization.StringSerializer
linger.ms = 0
max.block.ms = 60000
max.in.flight.requests.per.connection = 5
max.request.size = 1048576
metadata.max.age.ms = 300000
metric.reporters = []
metrics.num.samples = 2
metrics.recording.level = INFO
metrics.sample.window.ms = 30000
partitioner.class = class org.apache.kafka.clients.producer.internals.DefaultPartitioner
receive.buffer.bytes = 32768
reconnect.backoff.max.ms = 1000
reconnect.backoff.ms = 50
request.timeout.ms = 30000
retries = 0
retry.backoff.ms = 100
sasl.jaas.config = null
sasl.kerberos.kinit.cmd = /usr/bin/kinit
sasl.kerberos.min.time.before.relogin = 60000
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
sasl.kerberos.ticket.renew.window.factor = 0.8
sasl.mechanism = GSSAPI
security.protocol = PLAINTEXT
send.buffer.bytes = 131072
ssl.cipher.suites = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
ssl.endpoint.identification.algorithm = null
ssl.key.password = null
ssl.keymanager.algorithm = SunX509
ssl.keystore.location = null
ssl.keystore.password = null
ssl.keystore.type = JKS
ssl.protocol = TLS
ssl.provider = null
ssl.secure.random.implementation = null
ssl.trustmanager.algorithm = PKIX
ssl.truststore.location = null
ssl.truststore.password = null
ssl.truststore.type = JKS
transaction.timeout.ms = 60000
transactional.id = null
value.serializer = class org.apache.kafka.common.serialization.StringSerializer
14:13:50,847 INFO AppInfoParser - Kafka version : 1.0.0
14:13:50,847 INFO AppInfoParser - Kafka commitId : aaa7af6d4a11b29d
14:13:50,871 INFO Maxwell - Maxwell v1.29.2 is booting (MaxwellKafkaProducer), starting at Position[BinlogPosition[mysql-bin.000005:225424], lastHeartbeat=1642486284932]
14:13:51,040 INFO MysqlSavedSchema - Restoring schema id 1 (last modified at Position[BinlogPosition[mysql-bin.000005:16191], lastHeartbeat=0])
14:13:51,205 INFO BinlogConnectorReplicator - Setting initial binlog pos to: mysql-bin.000005:225424
14:13:51,235 INFO BinaryLogClient - Connected to 192.168.2.225:3308 at mysql-bin.000005/225424 (sid:6379, cid:215)
14:13:51,235 INFO BinlogConnectorReplicator - Binlog connected.
2、方式二、写在配置文件中:
cd /usr/local/maxwell-1.29.2
vim config.properties
参数项:
kafka_topic=maxwell
producer=kafka
kafka.bootstrap.servers=localhost:9092 host=192.168.2.225
user=maxwell
password=123456
port=3308
启动:
cd /usr/local/maxwell-1.29.2 ./bin/maxwell \
--config ./config.properties \
--jdbc_options='useSSL=false&serverTimezone=Asia/Shanghai'
三、Kafka监听测试
由Kafka监听后,maxwell不再打印信息,后台运行,交由kafka发送
在DB操作非查询SQL时,可以发现Kafka消费者能够收到消息
消费者终端的消息:
[root@localhost maxwell-1.29.2]# docker exec -it kafka /bin/bash
bash-5.1# bash-4.4# kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic producer --from-beginning
bash: bash-4.4#: command not found
bash-5.1# kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic producer --from-beginning
[2022-01-18 06:09:16,853] WARN [Consumer clientId=consumer-console-consumer-5789-1, groupId=console-consumer-5789] Error while fetching metadata with correlation id 2 : {producer=LEADER_NOT_AVAILABLE} (org.apache.kafka.cli
[2022-01-18 06:09:16,987] WARN [Consumer clientId=consumer-console-consumer-5789-1, groupId=console-consumer-5789] Error while fetching metadata with correlation id 4 : {producer=LEADER_NOT_AVAILABLE} (org.apache.kafka.cli
hello
aaaaaaaaaaaaaaa
{"database":"test-db","table":"day_sale","type":"delete","ts":1642486851,"xid":71876,"commit":true,"data":{"ID":166,"PRODUCT":"产品C","CHANNEL":"淘宝","AMOUNT":2497.0000,"SALE_DATE":"2022-01-18 13:48:48"}}
四、Kafka分区控制
1、用途:
希望kakfa能够并行执行,因为监听的消息都只送到一个分区的队列上,效率太慢
让Kafka进行并发发送,就多开分区进行,每个分区同时执行消息发送
2、问题:
教程并没有说明是如何关联库和分区的关系,只是会有不同
3、技术要点:
如何配置maxwell对kafka的分区?
参考config.properties对kafka配置的说明:
# *** kafka ***
# list of kafka brokers
#kafka.bootstrap.servers=hosta:9092,hostb:9092
# kafka topic to write to
# this can be static, e.g. 'maxwell', or dynamic, e.g. namespace_%{database}_%{table}
# in the latter case 'database' and 'table' will be replaced with the values for the row being processed
#kafka_topic=maxwell
# alternative kafka topic to write DDL (alter/create/drop) to. Defaults to kafka_topic
#ddl_kafka_topic=maxwell_ddl
-- 这段是关于分区的配置信息:
# *** partitioning ***
# 按照什么方式对数据进行划分?
# What part of the data do we partition by?
# 参数项:库 表 主键 事务ID 线程ID 字段
# producer_partition_by=database # [database, table, primary_key, transaction_id, thread_id, column]
# 如果选用字段来对数据进行划分, 指定在使用producer\u partition\u by=column时,分区依据的字段
# specify what fields to partition by when using producer_partition_by=column
# column separated list.
# 指明字段使用的是哪些
# producer_partition_columns=id,foo,bar
# 如果指明的字段不存在,则会分区规则回退到库名进行划分
# when using producer_partition_by=column, partition by this when
# the specified column(s) don't exist.
# producer_partition_by_fallback=database
# *** kinesis ***
# kinesis_stream=maxwell
# AWS places a 256 unicode character limit on the max key length of a record
# http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
#
# Setting this option to true enables hashing the key with the md5 algorithm
# before we send it to kinesis so all the keys work within the key size limit.
# Values: true, false
# Default: false
#kinesis_md5_keys=true
4、分区测试案例:
- 1、创建新的Topic并分配6个分区
# 进入kafka容器
docker exec -it kafka /bin/bash
# 创建主题并分配分区 (必须添加副本参数)
kafka-topics.sh --zookeeper 192.168.177.129:2181 --topic maxwell --create --replication-factor 1 --partitions 6 副本数量 1
--replication-factor 1
分区数量 6
--partitions 6
- 2、更新maxwell配置(按字段配置很少,就按照库划分配置即可)
# kafka配置
producer=kafka
kafka.bootstrap.servers=localhost:9092 # 改Topic名称
kafka_topic=maxwell # 改分区配置
producer_partition_by=database
- 3、重新启动maxwell
cd /usr/local/maxwell-1.29.2 ./bin/maxwell \
--config ./config.properties \
--jdbc_options='useSSL=false&serverTimezone=Asia/Shanghai'
- 4、向库中写入数据,然后查看kafka消息(使用Kafka tool可视化工具)
这一步省略具体步骤,只要是DML操作就行,效果查看使用【Kafka Tool】工具 (offset explorer)
五、关于Kafka分区配置的命令补充
Kafka基于这些命令脚本实现功能:
[root@localhost maxwell-1.29.2]# docker exec -it kafka ls /opt/kafka_2.13-2.8.1/bin
connect-distributed.sh kafka-preferred-replica-election.sh
connect-mirror-maker.sh kafka-producer-perf-test.sh
connect-standalone.sh kafka-reassign-partitions.sh
kafka-acls.sh kafka-replica-verification.sh
kafka-broker-api-versions.sh kafka-run-class.sh
kafka-cluster.sh kafka-server-start.sh
kafka-configs.sh kafka-server-stop.sh
kafka-console-consumer.sh kafka-storage.sh
kafka-console-producer.sh kafka-streams-application-reset.sh
kafka-consumer-groups.sh kafka-topics.sh
kafka-consumer-perf-test.sh kafka-verifiable-consumer.sh
kafka-delegation-tokens.sh kafka-verifiable-producer.sh
kafka-delete-records.sh trogdor.sh
kafka-dump-log.sh windows
kafka-features.sh zookeeper-security-migration.sh
kafka-leader-election.sh zookeeper-server-start.sh
kafka-log-dirs.sh zookeeper-server-stop.sh
kafka-metadata-shell.sh zookeeper-shell.sh
kafka-mirror-maker.sh
语句执行报错
kafka-topics.sh --zookeeper 192.168.177.129:2181 --topic maxwell --create --replication-factor 2 --partitions 3
[2022-01-18 08:19:44,532] ERROR org.apache.kafka.common.errors.InvalidReplicationFactorException:
Replication factor: 4 larger than available brokers: 1.
报错思路分析
https://www.cnblogs.com/tyoutetu/p/10855283.html
# 即,需要Kafka集群, 一个Kafka代表一个broker,副本必须小于等于集群的数量
--replication-factor (指定数量必须小于等于Kafka集群数,如果单个,写1即可)
不能修改分区数量的原因:
# 分区的数量只能增加,不能减少
bash-5.1# kafka-topics.sh --zookeeper 192.168.177.129:2181 -alter --partitions 3 --topic maxwell
WARNING: If partitions are increased for a topic that has a key, the partition logic or ordering of the messages will be affected
Error while executing topic command : The number of partitions for a topic can only be increased. Topic maxwell currently has 6 partitions, 3 would not be
[2022-01-18 08:28:42,743] ERROR org.apache.kafka.common.errors.InvalidPartitionsException: The number of partitions for a topic can only be increased. Topi
(kafka.admin.TopicCommand$)
解决办法:
删除主题 -> 重建主题
【Maxwell】02 Kafka配置的更多相关文章
- 【转】解决Maxwell发送Kafka消息数据倾斜问题
最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了 ...
- kafka 配置启动
Kafka配置(注意log.dirs不要配置在tmp目录下,因为该目录会被linux定时任务删除,会导致kafka崩溃)需要三个Kafka实例,分别安装在下面三个机器上:192.168.240.167 ...
- hadoop生态搭建(3节点)-08.kafka配置
如果之前没有安装jdk和zookeeper,安装了的请直接跳过 # https://www.oracle.com/technetwork/java/javase/downloads/java-arch ...
- Kafka配置信息
Kafka配置信息 broker配置信息 属性 默认值 描述 broker.id 必填参数,broker的唯一标识 log.dirs /tmp/kafka-logs Kafka数据存放的目录.可以指定 ...
- Hadoop集群搭建-02安装配置Zookeeper
Hadoop集群搭建-05安装配置YARN Hadoop集群搭建-04安装配置HDFS Hadoop集群搭建-03编译安装hadoop Hadoop集群搭建-02安装配置Zookeeper Hado ...
- windows下kafka配置入门 示例
实验平台与软件: 操作系统:windows7 32 位 java 开发包: jdk1.8.0_144 集群: zookeeper-3.3.6 消息队列: kafka_2.11-0.11.0.1 安装 ...
- kafka配置参数
Kafka为broker,producer和consumer提供了很多的配置参数. 了解并理解这些配置参数对于我们使用kafka是非常重要的.本文列出了一些重要的配置参数. 官方的文档 Configu ...
- kafka配置
官网:http://kafka.apache.org/ 主要有3种安装方式: 1. 单机单broker 2. 单机多broker 3. 多机多broker 1. wget http://mirror. ...
- Kafka配置及简单命令使用
一. Kafka中的相关概念的介绍 Kafka是一个scala实现的分布式消息中间件,其中涉及到的相关概念如下: Kafka中传递的内容称为message(消息),message 是通过topic(话 ...
- kafka配置记录
1. 准备三台机器,系统CentOs6 2. 安装好JDK和zookeeper 参考: zookeeper配置记录 3. 解压安装包到指定目录 tar -zxvf kafka_2.12-2.1.0.t ...
随机推荐
- 拼多多面试:Netty如何解决粘包问题?
粘包和拆包问题也叫做粘包和半包问题,它是指在数据传输时,接收方未能正常读取到一条完整数据的情况(只读取了部分数据,或多读取到了另一条数据的情况)就叫做粘包或拆包问题. 从严格意义上来说,粘包问题和拆包 ...
- Qt内存回收机制
参考视频:https://www.bilibili.com/video/BV1XW411x7NU?p=16 Qt中内存的回收是自己完成的,实验中,我们自定义一个按钮,通过重写析构函数来观察现象. 新建 ...
- C# 配置文件增加自定义节点
话不多说直接开撸! 首先创建一个Config的文件夹然后新增一个后缀名为.config的文件 配置文件的代码如下: <?xml version="1.0" encoding= ...
- win10系统(专业版)实现双网卡链路聚合
win10系统(专业版)实现双网卡链路聚合 参考: https://learn.microsoft.com/zh-cn/powershell/module/netswitchteam/new-nets ...
- mac os 10.15.1 懒人 .CDR
链接:https://pan.baidu.com/s/1MHbUnHWQuGVE1P36mTjmkQ 提取码:ohlu
- mysql加解密,substring substring_index函数
mysql加解密,substring substring_index函数 SELECT to_base64(AES_ENCRYPT('测试串','key12345678')) ;SELECT AES_ ...
- 为什么https要使用证书
为什么https要使用证书 什么是httpshttps不是一种新的协议,只是http的通信接口部分使用了ssl和tsl协议替代,加入了加密.证书.完整性保护的功能. 加密:共享密钥加密加密和解密公用一 ...
- Merry Christmas 礼物
Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` Merry Christmas 礼物 日期:2020-12 ...
- Angular项目简单使用拦截器 httpClient 请求响应处理
1:为啥要使用拦截器 httpClient 请求响应处理,其作用我们主要是: 目前我的Angular版本是Angular 17.3,版本中实现请求和响应的拦截处理了.这种机制非常适合添加如身份验证头. ...
- UE4打包发布后,在Windows和Android平台上访问非Asset文件
1.问题来源 最近的项目里面有个需求,要在打包之后的exe或者apk运行起来后访问工程Content或者安卓目录下的非Asset文件,比如text文件,json文件等,从中读取一些可随时修改的配置项信 ...