LLM 大模型学习必知必会系列(三):LLM和多模态模型高效推理实践
LLM 大模型学习必知必会系列(三):LLM和多模态模型高效推理实践
1.多模态大模型推理
LLM 的推理流程:
多模态的 LLM 的原理:
代码演示:使用 ModelScope NoteBook 完成语言大模型,视觉大模型,音频大模型的推理
环境配置与安装
以下主要演示的模型推理代码可在魔搭社区免费实例 PAI-DSW 的配置下运行(显存 24G) :
- 点击模型右侧 Notebook 快速开发按钮,选择 GPU 环境:
- 打开 Python 3 (ipykernel):
- 示例代码语言大模型推理示例代码
#通义千问1_8B LLM大模型的推理代码示例
#通义千问1_8B:https://modelscope.cn/models/qwen/Qwen-1_8B-Chat/summary
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
#Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", revision='master', trust_remote_code=True)
#use bf16
#model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
#use fp16
#model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
#use cpu only
#model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="cpu", trust_remote_code=True).eval()
#use auto mode, automatically select precision based on the device.
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", revision='master', device_map="auto", trust_remote_code=True).eval()
#Specify hyperparameters for generation. But if you use transformers>=4.32.0, there is no need to do this.
#model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
#第一轮对话 1st dialogue turn
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。
#第二轮对话 2nd dialogue turn
response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
#这是一个关于一个年轻人奋斗创业最终取得成功的故事。
#故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。
#为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。
#毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。
#最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。
#李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。
#第三轮对话 3rd dialogue turn
response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
#《奋斗创业:一个年轻人的成功之路》
#Qwen-1.8B-Chat现在可以通过调整系统指令(System Prompt),实现角色扮演,语言风格迁移,任务设定,行为设定等能力。
#Qwen-1.8B-Chat can realize roly playing, language style transfer, task setting, and behavior setting by system prompt.
response, _ = model.chat(tokenizer, "你好呀", history=None, system="请用二次元可爱语气和我说话")
print(response)
#你好啊!我是一只可爱的二次元猫咪哦,不知道你有什么问题需要我帮忙解答吗?
response, _ = model.chat(tokenizer, "My colleague works diligently", history=None, system="You will write beautiful compliments according to needs")
print(response)
#Your colleague is an outstanding worker! Their dedication and hard work are truly inspiring. They always go above and beyond to ensure that
#their tasks are completed on time and to the highest standard. I am lucky to have them as a colleague, and I know I can count on them to handle any challenge that comes their way.
输出结果:
- 视觉大模型推理示例代码
#Qwen-VL 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型性能强大,具备多语言对话、多图交错对话等能力,并支持中文开放域定位和细粒度图像识别与理解。
from modelscope import (
snapshot_download, AutoModelForCausalLM, AutoTokenizer, GenerationConfig
)
from auto_gptq import AutoGPTQForCausalLM
model_dir = snapshot_download("qwen/Qwen-VL-Chat-Int4", revision='v1.0.0')
import torch
torch.manual_seed(1234)
# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# use cuda device
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="cuda", trust_remote_code=True,use_safetensors=True).eval()
# 1st dialogue turn
query = tokenizer.from_list_format([
{'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
{'text': '这是什么'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# 图中是一名年轻女子在沙滩上和她的狗玩耍,狗的品种可能是拉布拉多。她们坐在沙滩上,狗的前腿抬起来,似乎在和人类击掌。两人之间充满了信任和爱。
# 2nd dialogue turn
response, history = model.chat(tokenizer, '输出"狗"的检测框', history=history)
print(response)
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image:
image.save('1.jpg')
else:
print("no box")
输出结果:
- 音频大模型推理示例代码
from modelscope import (
snapshot_download, AutoModelForCausalLM, AutoTokenizer, GenerationConfig
)
import torch
model_id = 'qwen/Qwen-Audio-Chat'
revision = 'master'
model_dir = snapshot_download(model_id, revision=revision)
torch.manual_seed(1234)
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
if not hasattr(tokenizer, 'model_dir'):
tokenizer.model_dir = model_dir
# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# use bf16
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="cuda", trust_remote_code=True).eval()
# 1st dialogue turn
query = tokenizer.from_list_format([
{'audio': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/1272-128104-0000.flac'}, # Either a local path or an url
{'text': 'what does the person say?'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# The person says: "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel".
# 2nd dialogue turn
response, history = model.chat(tokenizer, 'Find the start time and end time of the word "middle classes"', history=history)
print(response)
# The word "middle classes" starts at <|2.33|> seconds and ends at <|3.26|> seconds.
输出结果:
2. vLLM+FastChat 高效推理实战
FastChat 是一个开放平台,用于训练、服务和评估基于 LLM 的 ChatBot。
FastChat 的核心功能包括:
●优秀的大语言模型训练和评估代码。
●具有 Web UI 和 OpenAI 兼容的 RESTful API 的分布式多模型服务系统。
vLLM 是一个由加州伯克利分校、斯坦福大学和加州大学圣迭戈分校的研究人员基于操作系统中经典的虚拟缓存和分页技术开发的 LLM 服务系统。他实现了几乎零浪费的 KV 缓存,并且可以在请求内部和请求之间灵活共享 KV 高速缓存,从而减少内存使用量。
FastChat 开源链接:https://github.com/lm-sys/FastChat
vLLM 开源链接:https://github.com/vllm-project/vllm
实战演示:
- 安装 FastChat 最新包1
git clone https://github.com/lm-sys/FastChat.git
cd FastChat
pip install .
- 环境变量设置
在 vLLM 和 FastChat 上使用魔搭的模型需要设置两个环境变量:1
export VLLM_USE_MODELSCOPE=True
export FASTCHAT_USE_MODELSCOPE=True
2.1 使用 FastChat 和 vLLM 实现发布 model worker(s)
可以结合 FastChat 和 vLLM 搭建一个网页 Demo 或者类 OpenAI API 服务器,
- 首先启动一个 controller:
python -m fastchat.serve.controller
- 然后启动 vllm_worker 发布模型。如下给出单卡推理的示例,运行如下命令:千问模型示例:
#以qwen-1.8B为例,在A10运行
python -m fastchat.serve.vllm_worker --model-path qwen/Qwen-1_8B-Chat --trust-remote-code --dtype bfloat16
- 启动 vLLM 优化 worker 后,本次实践启动页面端 demo 展示:1
python -m fastchat.serve.gradio_web_server --host 0.0.0.0 --port 8000
2.2 LLM 的应用场景:RAG
LLM 会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。
RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。
一个典型的 RAG 的例子:
这里面主要包括包括三个基本步骤:
- 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。
- 检索 — 根据问题和 chunks 的相似度检索相关文档片段。
- 生成 — 以检索到的上下文为条件,生成问题的回答。
RAG(开卷考试)VS. Finetune(专业课程学习)
LLM 大模型学习必知必会系列(三):LLM和多模态模型高效推理实践的更多相关文章
- [ 学习路线 ] 2015 前端(JS)工程师必知必会 (2)
http://segmentfault.com/a/1190000002678515?utm_source=Weibo&utm_medium=shareLink&utm_campaig ...
- 《SQL必知必会》学习笔记二)
<SQL必知必会>学习笔记(二) 咱们接着上一篇的内容继续.这一篇主要回顾子查询,联合查询,复制表这三类内容. 上一部分基本上都是简单的Select查询,即从单个数据库表中检索数据的单条语 ...
- 学习《SQL必知必会(第4版)》中文PDF+英文PDF+代码++福达BenForta(作者)
不管是数据分析还是Web程序开发,都会接触到数据库,SQL语法简洁,使用方式灵活,功能强大,已经成为当今程序员不可或缺的技能. 推荐学习<SQL必知必会(第4版)>,内容丰富,文字简洁明快 ...
- 《MySQL必知必会》学习笔记——前言
前言 MySQL已经成为世界上最受欢迎的数据库管理系统之一.无论是用在小型开发项目上,还是用来构建那些声名显赫的网站,MySQL都证明了自己是个稳定.可靠.快速.可信的系统,足以胜任任何数据存储业务的 ...
- SQL必知必会,带你系统学习
你一定听说过大名鼎鼎的Oracle.MySQL.MongoDB等,这些数据库都是基于一个语言标准发展起来的,那就是SQL. SQL可以帮我们在日常工作中处理各种数据,如果你是程序员.产品经理或者是运营 ...
- 《SQL必知必会》学习笔记整理
简介 本笔记目前已包含 <SQL必知必会>中的所有章节. 我在整理笔记时所考虑的是:在笔记记完后,当我需要查找某个知识点时,不需要到书中去找,只需查看笔记即可找到相关知识点.因此在整理笔记 ...
- 《SQL必知必会》学习笔记(一)
这两天看了<SQL必知必会>第四版这本书,并照着书上做了不少实验,也对以前的概念有得新的认识,也发现以前自己有得地方理解错了.我采用的数据库是SQL Server2012.数据库中有一张比 ...
- mysql学习--mysql必知必会1
例如以下为mysql必知必会第九章開始: 正則表達式用于匹配特殊的字符集合.mysql通过where子句对正則表達式提供初步的支持. keywordregexp用来表示后面跟的东西作为正則表達式 ...
- mysql学习--mysql必知必会
上图为数据库操作分类: 下面的操作參考(mysql必知必会) 创建数据库 运行脚本建表: mysql> create database mytest; Query OK, 1 row ...
- 数据库学习之中的一个: 在 Oracle sql developer上执行SQL必知必会脚本
1 首先在開始菜单中打开sql developer: 2. 创建数据库连接 点击左上角的加号 在弹出的对话框中填写username和password 測试假设成功则点击连接,记得角色要写SYSDBA ...
随机推荐
- 2款Notepad++平替工具(实用、跨平台的文本编辑器)
前言 今天大姚给大家分享2款Notepad++平替工具,实用.跨平台(支持Window/MacOS/Linux操作系统平台)的文本编辑器. NotepadNext NotepadNext是一个跨平台的 ...
- GAN的实现和一些问题
GAN的学习是一个二人博弈问题,最终目标是达到纳什平衡.对抗指的是生成网络和判别网络的互相对抗.生成网络尽可能生成逼真样本,判别网络则尽可能去判别该样本是真实样本,还是生成的假样本.示意图如下: 生成 ...
- leetcode - 子数组最大平均值
给定 n 个整数,找出平均数最大且长度为 k 的连续子数组,并输出该最大平均数. 示例: 输入:[1,12,-5,-6,50,3], k = 4 输出:12.75 解释:最大平均数 (12-5-6+5 ...
- 力扣171(java)-Excel表列序号(简单)
题目: 给你一个字符串 columnTitle ,表示 Excel 表格中的列名称.返回 该列名称对应的列序号 . 例如: A -> 1B -> 2C -> 3...Z -> ...
- 阿里云CDN产品经理陈章炜:边缘创新技术和落地实践
简介: CDN除了加速外,不断被赋予更多价值.在阿里云CDN推出的<极速奔跑吧 2021>首场直播中,阿里云架构师和产品经理不仅对近期阿里云发布的CDN产品最佳实践图进行了详细解读,还对C ...
- Flagger on ASM·基于Mixerless Telemetry实现渐进式灰度发布系列 1 遥测数据
简介: 服务网格ASM的Mixerless Telemetry技术,为业务容器提供了无侵入式的遥测数据.遥测数据一方面作为监控指标被ARMPS/prometheus采集,用于服务网格可观测性:另一方面 ...
- 谈谈JVM内部锁升级过程
简介: 对象在内存中的内存布局是什么样的?如何描述synchronized和ReentrantLock的底层实现和重入的底层原理?为什么AQS底层是CAS+volatile?锁的四种状态和锁升级过程应 ...
- vue+vant+js实现购物车原理小demo(基础版)
电商毕业设计里的一个购物车demo,拿vue+vant需要写的核心计算代码只有12行.效果图: main.js: Vue.use(Stepper); .vue文件 <template> & ...
- fastreport .net打印普通报表
fastreport .net打印普通报表 前言: .net代码层先不记录在这,后续会单独写一篇博客来记录. 直接在工具上进行功能点的实现 一.效果图 二.功能点 分页 分页小计 金额大写 三.功能点 ...
- Lock、Monitor线程锁
Lock.Monitor线程锁 官网使用 https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.monitor?view=net- ...