Note:[ wechat:Y466551 | 付费咨询,非诚勿扰 ]

论文信息

论文标题:Cluster Alignment with a Teacher for Unsupervised Domain Adaptation
论文作者:Zhijie Deng, Yucen Luo, Jun Zhu
论文来源:2020 ICCV
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

 

2 方法

2.1 模型框架

  

2.2 Cluster Alignment with a Teacher

  目标:discriminative learning 和 class-conditional alignment between domains?

    $\min _{\theta} \mathcal{L}_{y}+\alpha\left(\mathcal{L}_{c}+\mathcal{L}_{a}\right) \quad(1)$

2.2.1 Discriminative clustering with a teacher

  目标函数:

    $\mathcal{L}_{c}\left(\mathcal{X}_{s}, \mathcal{X}_{t}\right)=\mathcal{L}_{c}\left(\mathcal{X}_{s}\right)+\mathcal{L}_{c}\left(\mathcal{X}_{t}\right)$

    $\begin{aligned}\mathcal{L}_{c}(\mathcal{X})=  \frac{1}{|\mathcal{X}|^{2}} \sum_{i=1}^{|\mathcal{X}|} \sum_{j=1}^{|\mathcal{X}|}\left[\delta_{i j} d\left(f\left(x^{i}\right), f\left(x^{j}\right)\right)+\right.\left.\left(1-\delta_{i j}\right) \max \left(0, m-d\left(f\left(x^{i}\right), f\left(x^{j}\right)\right)\right)\right]\end{aligned}$

  其中 ,$\delta_{i j}$ 代表样本 $x_i$ 和 样本 $x_j$ 是不是同一类;

  Note:目标域样本的标签(伪)由 教师分类器给出;

  Note:可能会怀疑,教师分类器的错误预测是否会破坏训练的动态。然而,先前关于半监督学习[17,43]的研究已经验证了这种训练总是能导致良好的收敛性,并证明了对不正确标签的鲁棒性。

2.2.2 Cluster alignment via conditional feature matching

  类条件特征对齐:

    $\min _{\theta} \mathcal{D}\left(\mathcal{F}_{s, k} \| \mathcal{F}_{t, k}\right)$

  其中,$\mathcal{F}_{s, k}\left(\mathcal{F}_{t, k}\right) $ 表示由属于源域(目标域)的类 $k$ 的所有特征组成的集合。

  Cluster alignment loss 如下:

    $\mathcal{L}_{a}\left(\mathcal{X}_{s}, \mathcal{Y}_{s}, \mathcal{X}_{t}\right)=\frac{1}{K} \sum_{k=1}^{K}\left\|\lambda_{s, k}-\lambda_{t, k}\right\|_{2}^{2}$

  其中:
    $\lambda_{s, k}=\frac{1}{\left|\mathcal{X}_{s, k}\right|} \sum_{x_{s}^{i} \in \mathcal{X}_{s, k}} f\left(x_{s}^{i}\right)$

    $\lambda_{t, k}=\frac{1}{\left|\mathcal{X}_{t, k}\right|} \sum_{x_{t}^{i} \in \mathcal{X}_{t, k}} f\left(x_{t}^{i}\right)$

2.3 Improved marginal distribution alignment

  最后作者还做了一些提高,这是因为实验观察到:一开始训练的时候,teacher 对于目标域的判断并不果断,即分类结果更多聚集在分类边界附近,而不是类别中心。

  目标函数:

    $\begin{array}{c}\min _{\theta} \max _{\phi} \mathcal{L}_{d}\left(\mathcal{X}_{s}, \mathcal{X}_{t}\right)=\frac{1}{N} \sum_{i=1}^{N}\left[\log c\left(f\left(x_{s}^{i} ; \theta\right) ; \phi\right)\right]+ \frac{1}{\tilde{M}} \sum_{i=1}^{\tilde{M}}\left[\log \left(1-c\left(f\left(x_{t}^{i} ; \theta\right) ; \phi\right)\right) \gamma_{i}\right]\end{array}$

3 实验

  

论文解读()《Cluster Alignment with a Teacher for Unsupervised Domain Adaptation》的更多相关文章

  1. 《Population Based Training of Neural Networks》论文解读

      很早之前看到这篇文章的时候,觉得这篇文章的思想很朴素,没有让人眼前一亮的东西就没有太在意.之后读到很多Multi-Agent或者并行训练的文章,都会提到这个算法,比如第一视角多人游戏(Quake ...

  2. ImageNet Classification with Deep Convolutional Neural Networks 论文解读

    这个论文应该算是把深度学习应用到图片识别(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意义的一篇文章.因为在之前,人们 ...

  3. 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记

    论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...

  4. Quantization aware training 量化背后的技术——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

    1,概述 模型量化属于模型压缩的范畴,模型压缩的目的旨在降低模型的内存大小,加速模型的推断速度(除了压缩之外,一些模型推断框架也可以通过内存,io,计算等优化来加速推断). 常见的模型压缩算法有:量化 ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  7. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  8. Training spiking neural networks for reinforcement learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduc ...

  9. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  10. 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations

    目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...

随机推荐

  1. 【Docker】安装及部署

    一.Ubuntu使用apt安装Docker 官方安装文档:https://docs.docker.com/engine/install/ubuntu/ 1.准备安装环境 [root@Docker-Ub ...

  2. CentOS 7 部署SonarQube 8.3版本及配置jenkins分析C#代码

    安装SonarQube 8.3版本 官方文档 下载地址 准备工作 准备一台CentOS 7服务器 SonarQube 8.3版本只支持Java 11 (下载Java 11) 安装PostgreSQL ...

  3. 时间函数strftime和strptime的差别

    strftime是转换为特定格式输出, strptime是将一个时间字符串解析为时间类型对象. strftime是按照想要的格式,去转换.重点是格式! strptime不管什么格式,只要把特定的时间字 ...

  4. ✗ CocoaPods not installed.

    mac 配置 flutter 会提示许多 关于xcode的 如图 显示 ✗ CocoaPods installed but not initialized. 其实最开始提示的是 ✗ CocoaPods ...

  5. 万字长文详述ClickHouse在京喜达实时数据的探索与实践

    1 前言 京喜达技术部在社区团购场景下采用JDQ+Flink+Elasticsearch架构来打造实时数据报表.随着业务的发展 Elasticsearch开始暴露出一些弊端,不适合大批量的数据查询,高 ...

  6. kafka集群是如何选择leader,你知道吗?

    前言 kafka集群是由多个broker节点组成,这里面包含了许多的知识点,以下的这些问题你都知道吗? 你知道topic的分区leader是怎么选举的吗? 你知道zookeeper中存储了kafka的 ...

  7. Doris(七) -- 修改表、动态和临时分区、join的优化

    修改表 修改表名 -- 1.将名为 table1 的表修改为 table2 ALTER TABLE table1 RENAME table2; -- 示例 ALTER TABLE aggregate_ ...

  8. karyoploteR: 基因组数据可视化 R 包

    karyoploteR,是一个适用于所有基因组数据(any data on any genome)非圆环布局(non-circular layouts)的可视化 R/Bioconductor 包.开发 ...

  9. Quartz + SpringBoot 实现定时任务(多任务,多执行时间)代码模板(直接CV即可)

    一,什么是Quartz quartz 是一款开源且丰富特性的Java 任务调度库,用于实现任务调度和定时任务.它支持各种任务类型和灵活的配置选项,具备作业持久化.集群和分布式调度.错误处理和重试机制等 ...

  10. OSI七层协议剩余、socket模块、半连接池

    传输层之TCP与UDP协议 TCP与UDP都是用来规定通信方式的 通信的时候可以随心所欲的聊 也可以遵循一些协议符合要求的聊 随心所欲的聊:文字 图片 视频 遵循一些协议:开头带尊称 首行空两个 只准 ...