简介: Flink+Hologres亿级用户实时UV精确去重最佳实践

UV、PV计算,因为业务需求不同,通常会分为两种场景:

  • 离线计算场景:以T+1为主,计算历史数据
  • 实时计算场景:实时计算日常新增的数据,对用户标签去重

针对离线计算场景,Hologres基于RoaringBitmap,提供超高基数的UV计算,只需进行一次最细粒度的预聚合计算,也只生成一份最细粒度的预聚合结果表,就能达到亚秒级查询。具体详情可以参见往期文章>>Hologres如何支持超高基数UV计算(基于RoaringBitmap实现)

对于实时计算场景,可以使用Flink+Hologres方式,并基于RoaringBitmap,实时对用户标签去重。这样的方式,可以较细粒度的实时得到用户UV、PV数据,同时便于根据需求调整最小统计窗口(如最近5分钟的UV),实现类似实时监控的效果,更好的在大屏等BI展示。相较于以天、周、月等为单位的去重,更适合在活动日期进行更细粒度的统计,并且通过简单的聚合,也可以得到较大时间单位的统计结果。

主体思想

  1. Flink将流式数据转化为表与维表进行JOIN操作,再转化为流式数据。此举可以利用Hologres维表的insertIfNotExists特性结合自增字段实现高效的uid映射。
  2. Flink把关联的结果数据按照时间窗口进行处理,根据查询维度使用RoaringBitmap进行聚合,并将查询维度以及聚合的uid存放在聚合结果表,其中聚合出的uid结果放入Hologres的RoaringBitmap类型的字段中。
  3. 查询时,与离线方式相似,直接按照查询条件查询聚合结果表,并对其中关键的RoaringBitmap字段做or运算后并统计基数,即可得出对应用户数。
  4. 处理流程如下图所示

方案最佳实践

1.创建相关基础表

1)创建表uid_mapping为uid映射表,用于映射uid到32位int类型。

  • RoaringBitmap类型要求用户ID必须是32位int类型且越稠密越好(即用户ID最好连续)。常见的业务系统或者埋点中的用户ID很多是字符串类型或Long类型,因此需要使用uid_mapping类型构建一张映射表。映射表利用Hologres的SERIAL类型(自增的32位int)来实现用户映射的自动管理和稳定映射。
  • 由于是实时数据, 设置该表为行存表,以提高Flink维表实时JOIN的QPS。
BEGIN;
CREATE TABLE public.uid_mapping (
uid text NOT NULL,
uid_int32 serial,
PRIMARY KEY (uid)
);
--将uid设为clustering_key和distribution_key便于快速查找其对应的int32值
CALL set_table_property('public.uid_mapping', 'clustering_key', 'uid');
CALL set_table_property('public.uid_mapping', 'distribution_key', 'uid');
CALL set_table_property('public.uid_mapping', 'orientation', 'row');
COMMIT;

2)创建表dws_app为基础聚合表,用于存放在基础维度上聚合后的结果。

  • 使用RoaringBitmap前需要创建RoaringBitmap extention,同时也需要Hologres实例为0.10版本
CREATE EXTENSION IF NOT EXISTS roaringbitmap;
  • 为了更好性能,建议根据基础聚合表数据量合理的设置Shard数,但建议基础聚合表的Shard数设置不超过计算资源的Core数。推荐使用以下方式通过Table Group来设置Shard数
--新建shard数为16的Table Group,
--因为测试数据量百万级,其中后端计算资源为100core,设置shard数为16
BEGIN;
CREATE TABLE tg16 (a int); --Table Group哨兵表
call set_table_property('tg16', 'shard_count', '16');
COMMIT;
  • 相比离线结果表,此结果表增加了时间戳字段,用于实现以Flink窗口周期为单位的统计。结果表DDL如下:
BEGIN;
create table dws_app(
country text,
prov text,
city text,
ymd text NOT NULL, --日期字段
timetz TIMESTAMPTZ, --统计时间戳,可以实现以Flink窗口周期为单位的统计
uid32_bitmap roaringbitmap, -- 使用roaringbitmap记录uv
primary key(country, prov, city, ymd, timetz)--查询维度和时间作为主键,防止重复插入数据
);
CALL set_table_property('public.dws_app', 'orientation', 'column');
--日期字段设为clustering_key和event_time_column,便于过滤
CALL set_table_property('public.dws_app', 'clustering_key', 'ymd');
CALL set_table_property('public.dws_app', 'event_time_column', 'ymd');
--等价于将表放在shard数为16的table group
call set_table_property('public.dws_app', 'colocate_with', 'tg16');
--group by字段设为distribution_key
CALL set_table_property('public.dws_app', 'distribution_key', 'country,prov,city');
COMMIT;

2.Flink实时读取数据并更新dws_app基础聚合表

完整示例源码请见alibabacloud-hologres-connectors examples

1)Flink 流式读取数据源(DataStream),并转化为源表(Table)

//此处使用csv文件作为数据源,也可以是kafka等
DataStreamSource odsStream = env.createInput(csvInput, typeInfo);
// 与维表join需要添加proctime字段,详见https://help.aliyun.com/document_detail/62506.html
Table odsTable =
tableEnv.fromDataStream(
odsStream,
$("uid"),
$("country"),
$("prov"),
$("city"),
$("ymd"),
$("proctime").proctime());
// 注册到catalog环境
tableEnv.createTemporaryView("odsTable", odsTable);

2)将源表与Hologres维表(uid_mapping)进行关联

其中维表使用insertIfNotExists参数,即查询不到数据时自行插入,uid_int32字段便可以利用Hologres的serial类型自增创建。

// 创建Hologres维表,其中nsertIfNotExists表示查询不到则自行插入
String createUidMappingTable =
String.format(
"create table uid_mapping_dim("
+ " uid string,"
+ " uid_int32 INT"
+ ") with ("
+ " 'connector'='hologres',"
+ " 'dbname' = '%s'," //Hologres DB名
+ " 'tablename' = '%s',"//Hologres 表名
+ " 'username' = '%s'," //当前账号access id
+ " 'password' = '%s'," //当前账号access key
+ " 'endpoint' = '%s'," //Hologres endpoint
+ " 'insertifnotexists'='true'"
+ ")",
database, dimTableName, username, password, endpoint);
tableEnv.executeSql(createUidMappingTable);
// 源表与维表join
String odsJoinDim =
"SELECT ods.country, ods.prov, ods.city, ods.ymd, dim.uid_int32"
+ " FROM odsTable AS ods JOIN uid_mapping_dim FOR SYSTEM_TIME AS OF ods.proctime AS dim"
+ " ON ods.uid = dim.uid";
Table joinRes = tableEnv.sqlQuery(odsJoinDim);

3)将关联结果转化为DataStream,通过Flink时间窗口处理,结合RoaringBitmap进行聚合

DataStream<Tuple6<String, String, String, String, Timestamp, byte[]>> processedSource =
source
// 筛选需要统计的维度(country, prov, city, ymd)
.keyBy(0, 1, 2, 3)
// 滚动时间窗口;此处由于使用读取csv模拟输入流,采用ProcessingTime,实际使用中可使用EventTime
.window(TumblingProcessingTimeWindows.of(Time.minutes(5)))
// 触发器,可以在窗口未结束时获取聚合结果
.trigger(ContinuousProcessingTimeTrigger.of(Time.minutes(1)))
.aggregate(
// 聚合函数,根据key By筛选的维度,进行聚合
new AggregateFunction<
Tuple5<String, String, String, String, Integer>,
RoaringBitmap,
RoaringBitmap>() {
@Override
public RoaringBitmap createAccumulator() {
return new RoaringBitmap();
}
@Override
public RoaringBitmap add(
Tuple5<String, String, String, String, Integer> in,
RoaringBitmap acc) {
// 将32位的uid添加到RoaringBitmap进行去重
acc.add(in.f4);
return acc;
}
@Override
public RoaringBitmap getResult(RoaringBitmap acc) {
return acc;
}
@Override
public RoaringBitmap merge(
RoaringBitmap acc1, RoaringBitmap acc2) {
return RoaringBitmap.or(acc1, acc2);
}
},
//窗口函数,输出聚合结果
new WindowFunction<
RoaringBitmap,
Tuple6<String, String, String, String, Timestamp, byte[]>,
Tuple,
TimeWindow>() {
@Override
public void apply(
Tuple keys,
TimeWindow timeWindow,
Iterable<RoaringBitmap> iterable,
Collector<
Tuple6<String, String, String, String, Timestamp, byte[]>> out)
throws Exception {
RoaringBitmap result = iterable.iterator().next();
// 优化RoaringBitmap
result.runOptimize();
// 将RoaringBitmap转化为字节数组以存入Holo中
byte[] byteArray = new byte[result.serializedSizeInBytes()];
result.serialize(ByteBuffer.wrap(byteArray));
// 其中 Tuple6.f4(Timestamp) 字段表示以窗口长度为周期进行统计,以秒为单位
out.collect(
new Tuple6<>(
keys.getField(0),
keys.getField(1),
keys.getField(2),
keys.getField(3),
new Timestamp(
timeWindow.getEnd() / 1000 * 1000),
byteArray));
}
});

4)写入结果表

需要注意的是,Hologres中RoaringBitmap类型在Flink中对应Byte数组类型

// 计算结果转换为表
Table resTable =
tableEnv.fromDataStream(
processedSource,
$("country"),
$("prov"),
$("city"),
$("ymd"),
$("timest"),
$("uid32_bitmap"));
// 创建Hologres结果表, 其中Hologres的RoaringBitmap类型通过Byte数组存入
String createHologresTable =
String.format(
"create table sink("
+ " country string,"
+ " prov string,"
+ " city string,"
+ " ymd string,"
+ " timetz timestamp,"
+ " uid32_bitmap BYTES"
+ ") with ("
+ " 'connector'='hologres',"
+ " 'dbname' = '%s',"
+ " 'tablename' = '%s',"
+ " 'username' = '%s',"
+ " 'password' = '%s',"
+ " 'endpoint' = '%s',"
+ " 'connectionSize' = '%s',"
+ " 'mutatetype' = 'insertOrReplace'"
+ ")",
database, dwsTableName, username, password, endpoint, connectionSize);
tableEnv.executeSql(createHologresTable);
// 写入计算结果到dws表
tableEnv.executeSql("insert into sink select * from " + resTable);

3.数据查询

查询时,从基础聚合表(dws_app)中按照查询维度做聚合计算,查询bitmap基数,得出group by条件下的用户数

  • 查询某天内各个城市的uv
--运行下面RB_AGG运算查询,可执行参数先关闭三阶段聚合开关(默认关闭),性能更好
set hg_experimental_enable_force_three_stage_agg=off SELECT country
,prov
,city
,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
FROM dws_app
WHERE ymd = '20210329'
GROUP BY country
,prov
,city
;
  • 查询某段时间内各个省份的uv
--运行下面RB_AGG运算查询,可执行参数先关闭三阶段聚合开关(默认关闭),性能更好
set hg_experimental_enable_force_three_stage_agg=off SELECT country
,prov
,RB_CARDINALITY(RB_OR_AGG(uid32_bitmap)) AS uv
FROM dws_app
WHERE time > '2021-04-19 18:00:00+08' and time < '2021-04-19 19:00:00+08'
GROUP BY country
,prov
;

原文链接
本文为阿里云原创内容,未经允许不得转载。

Flink+Hologres亿级用户实时UV精确去重最佳实践的更多相关文章

  1. 亿级SQL Server运维的最佳实践PPT分享

    这次分享是我在微软的一次分享,关于SQL Server运维最佳实践的部分,由于受众来自不同背景,因此我让分享在一个更加抽象的角度进行,PPT分享如下: 点击这里进行下载

  2. 亿级用户下的新浪微博平台架构 前端机(提供 API 接口服务),队列机(处理上行业务逻辑,主要是数据写入),存储(mc、mysql、mcq、redis 、HBase等)

    https://mp.weixin.qq.com/s/f319mm6QsetwxntvSXpKxg 亿级用户下的新浪微博平台架构 炼数成金前沿推荐 2014-12-04 序言 新浪微博在2014年3月 ...

  3. 手机QQ公众号亿级消息实时群发架构

    编者按:高可用架构分享及传播在架构领域具有典型意义的文章,本文由孙子荀分享.转载请注明来自高可用架构公众号 ArchNotes.   孙子荀,2009 年在华为从事内核和分布式系统的开发工作:2011 ...

  4. 亿级用户百TB级数据的AIOps 技术实践之路

    关于面临的挑战 "因为专业性强,我认为反而让交互方式变简单了,打个点餐的比方,软件1.0阶段是,我要吃鱼香肉丝,我要吃辣的或是素一点的,根据清晰的接口上菜.而软件2.0阶段就是,我今天想吃开 ...

  5. 文章翻译:Recommending items to more than a billion people(面向十亿级用户的推荐系统)

    Web上数据的增长使得在完整的数据集上使用许多机器学习算法变得更加困难.特别是对于个性化推荐问题,数据采样通常不是一种选择,需要对分布式算法设计进行创新,以便我们能够扩展到这些不断增长的数据集. 协同 ...

  6. no.9亿级用户下的新浪微博平台架构读后感

    微博平台的第三代技术体系,使用正交分解法建立模型:在水平方向,采用典型的三级分层模型,即接口层.服务层与资源层:在垂直方向,进一步细分为业务架构.技术架构.监控平台与服务治理平台. 水平分层 (1)接 ...

  7. Redis实战:如何构建类微博的亿级社交平台

    微博及 Twitter 这两大社交平台都重度依赖 Redis 来承载海量用户访问.本文介绍如何使用 Redis 来设计一个社交系统,以及如何扩展 Redis 让其能够承载上亿用户的访问规模. 虽然单台 ...

  8. 从100PV到1亿级PV网站架构演变

    如果你对项目管理.系统架构有兴趣,请加微信订阅号"softjg",加入这个PM.架构师的大家庭 一个网站就像一个人,存在一个从小到大的过程.养一个网站和养一个人一样,不同时期需要不 ...

  9. [转载]从100PV到1亿级PV网站架构演变

    原文地址:http://www.uml.org.cn/zjjs/201307172.asp 一个网站就像一个人,存在一个从小到大的过程.养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有 ...

  10. 从100PV到1亿级PV网站架构演变(转)

    http://www.linuxde.net/2013/05/13581.html 一个网站就像一个人,存在一个从小到大的过程.养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原 ...

随机推荐

  1. ubuntu20 宽带连接

    nmcli connection edit type pppoe con-name "连接名称" set pppoe.username 宽带账号 set pppoe.passwor ...

  2. vim的使用进步

    vim的使用进步 1.如果遇到命令行中无法退出的 狂按esc按键 或者也可以使用v模式下切换一下,之后按esc 保存退出 保存退出--:wq 保存:w 不保存退出:q! i--插入模式 v- 可视化模 ...

  3. MySQL(视图、事务、存储过程、函数、流程控制、索引)

    一 视图(了解) 什么是视图 视图就是通过查询得到一张虚拟表,然后保存下来,下次可以直接使用 为什么要用视图 如果要频繁的操作一张虚拟表(拼表组成的),你就可以制作成视图,后续直接操作 视图其实也是一 ...

  4. 【LeetCode刷题】744. 寻找比目标字母大的最小字母

    744. 寻找比目标字母大的最小字母(点击跳转LeetCode) 给你一个排序后的字符列表 letters ,列表中只包含小写英文字母.另给出一个目标字母 target,请你寻找在这一有序列表里比目标 ...

  5. 记录--一道字节面试题引出的this指向问题

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 var length = 10; function fn () { return this.length + 1; } var obj = ...

  6. shk_to_bram

    Entity: shk_to_bram File: shk_to_bram.v Diagram Description Company: FpgaPublish Engineer: FP Create ...

  7. 探秘Kubernetes:在本地环境中玩转容器技术

    在云计算时代,Kubernetes 已成为云原生技术的真正基石.它是应用程序容器的编排动力源,可跨多个集群自动部署.扩展和运行容器.Kubernetes 不仅仅是一个流行词,它还是一种模式转变,是现代 ...

  8. Typora基础使用教程

    Typora基础使用教程(入门级) 安装和激活 安装 typora任意地方搜索下载即可 激活 百度网盘链接链接:https://pan.baidu.com/s/1WKig_3-hkDZTRjS1rgG ...

  9. 使用sbt对Scala程序进行打包并运行(Spark单机运行)

    十.使用sbt对Scala程序进行打包并运行(Spark单机运行) 在./sparkapp 中新建文件 simple.sbt(vim ./sparkapp/simple.sbt),添加内容如下,声明该 ...

  10. Echarts世界地图和网页表格数据交互联动

    html布局: 1 <div class="column"> 2 <div class="panel bl bar1"> 3 <d ...