Problem Statement

You are given a sequence $A=(A_1,\ldots,A_N)$ of length $N$. Each element is $0$, $1$, or $2$.

Process $Q$ queries in order. Each query is of one of the following kinds:

  • 1 L R: print the inversion number of the sequence $(A_L,\ldots,A_R)$.
  • 2 L R S T U: for each $i$ such that $L\leq i \leq R$, if $A_i$ is $0$, replace it with $S$; if $A_i$ is $1$, replace it with $T$; if $A_i$ is $2$, replace it with $U$.
What is the inversion number?

The inversion number of a sequence $B = (B_1, \ldots, B_M)$ is the number of pairs of integers $(i, j)$ $(1 \leq i < j \leq M)$ such that $B_i > B_j$.

Constraints

  • $1 \leq N \leq 10^5$
  • $0 \leq A_i \leq 2$
  • $1\leq Q\leq 10^5$
  • In each query, $1\leq L \leq R \leq N$.
  • In each query of the second kind, $0\leq S,T,U \leq 2$.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $Q$
$A_1$ $A_2$ $\ldots$ $A_N$
$\rm Query_1$
$\rm Query_2$
$\vdots$
$\rm Query_Q$

$\rm Query_i$ denotes the $i$-th query, which is in one of the following formats:

$1$ $L$ $R$
$2$ $L$ $R$ $S$ $T$ $U$

Output

Print the responses to the queries of the first kind in the given order, separated by newlines.


Sample Input 1

5 3
2 0 2 1 0
1 2 5
2 2 4 2 1 0
1 2 5

Sample Output 1

3
4

Initially, $A=(2,0,2,1,0)$.

  • In the $1$-st query, print the inversion number $3$ of $(A_2,A_3,A_4,A_5)=(0,2,1,0)$.
  • The $2$-nd query makes $A=(2,2,0,1,0)$.
  • In the $3$-rd query, print the inversion number $4$ of $(A_2,A_3,A_4,A_5)=(2,0,1,0)$.

Sample Input 2

3 3
0 1 2
1 1 1
2 1 3 0 0 0
1 1 3

Sample Output 2

0
0

区间修改区间询问,首先考虑线段树。

那么我们可以把一对逆序对分成两类,把线段用线段树分成一个个区间后,逆序对有些两个数在一个区间里,有些不在一个区间里。在一个区间里的逆序对,我们可以每次更新的时候都维护逆序对个数。而不再一个区间里的,我们可以在外面再跑一次

那么具体来说。首先不考虑修改,一个区间的逆序对数量需要分开来记录才好记录。记录 \(p_{i,j}\) 为这个区间中形如 \((i,j)\) 的有序数对有多少个。当然我们还要记录一个区间有多少个0,多少个1,多少个2.

线段树上两个区间合并时,节点 \(o\) 的有序数对 \((i,j)\) 的数量为左儿子 \((i,j)\) 的数量和右儿子 \((i,j)\) 的数量加上左区间 \(i\) 的数量和右区间 \(j\) 的数量之积。

区间修改自然还要打tag,记录这个区间中原有的 0 变成那个数字,1变成那个数字,2变成那个数字。这个 tag 也很好合并,更新时逐个数字更新就好了。

线段树的部分解决了,来看询问时的部分。询问时对于跨过区间的逆序对,我们可以记录在这个区间前面有多少个 0,有多少个 1,有多少个2,然后乘起来加上就好。

#include<bits/stdc++.h>
const int N=1e5+5;
typedef long long LL;
struct node{
int a[3],s,t,u;
LL b[3][3];
}tr[N<<2];
LL ret;
int n,op,l,r,s,t,u,q,x,a0,a1,a2;
void pushup(int o)
{
for(int i=0;i<3;i++)
tr[o].a[i]=tr[o<<1].a[i]+tr[o<<1|1].a[i];
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
tr[o].b[i][j]=tr[o<<1].b[i][j]+tr[o<<1|1].b[i][j]+1LL*tr[o<<1].a[i]*tr[o<<1|1].a[j];
}
void turn(int o,int s,int t,int u)
{
int a[3],p[3];
LL b[3][3];
memset(b,0,sizeof(b));
memset(a,0,sizeof(a));
p[0]=s,p[1]=t,p[2]=u;
for(int i=0;i<3;i++)
{
a[p[i]]+=tr[o].a[i];
for(int j=0;j<3;j++)
b[p[i]][p[j]]+=tr[o].b[i][j];
}
memcpy(tr[o].a,a,sizeof(a));
memcpy(tr[o].b,b,sizeof(b));
}
void add(int o,int s,int t,int u)
{
if(tr[o].s==-1)
tr[o].s=s,tr[o].t=t,tr[o].u=u;
else
{
int p[3]={s,t,u};
tr[o].s=p[tr[o].s];
tr[o].t=p[tr[o].t];
tr[o].u=p[tr[o].u];
}
}
void pushdown(int o)
{
if(tr[o].s!=-1)
{
turn(o<<1,tr[o].s,tr[o].t,tr[o].u);
turn(o<<1|1,tr[o].s,tr[o].t,tr[o].u);
add(o<<1,tr[o].s,tr[o].t,tr[o].u);
add(o<<1|1,tr[o].s,tr[o].t,tr[o].u);
tr[o].s=tr[o].t=tr[o].u=-1;
}
}
void solve(int o,int l,int r)
{
if(l>r)
return;
if(l==r)
{
scanf("%d",&x);
tr[o].a[x]++;
return;
}
int md=l+r>>1;
solve(o<<1,l,md);
solve(o<<1|1,md+1,r);
pushup(o);
tr[o].s=tr[o].t=tr[o].u=-1;
}
LL query(int o,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
{
ret+=1LL*a2*tr[o].a[1];
ret+=1LL*a1*tr[o].a[0];
ret+=1LL*a2*tr[o].a[0];
a0+=tr[o].a[0];
a1+=tr[o].a[1];
a2+=tr[o].a[2];
return tr[o].b[2][1]+tr[o].b[2][0]+tr[o].b[1][0];
}
pushdown(o);
int md=l+r>>1;
LL ret=0;
if(md>=x)
ret+=query(o<<1,l,md,x,y);
if(md<y)
ret+=query(o<<1|1,md+1,r,x,y);
return ret;
}
void update(int o,int l,int r,int x,int y,int s,int t,int u)
{
if(x<=l&&r<=y)
{
turn(o,s,t,u);
add(o,s,t,u);
return;
}
pushdown(o);
int md=l+r>>1;
if(md>=x)
update(o<<1,l,md,x,y,s,t,u);
if(md<y)
update(o<<1|1,md+1,r,x,y,s,t,u);
pushup(o);
}
int main()
{
scanf("%d%d",&n,&q);
solve(1,1,n);
while(q--)
{
scanf("%d",&op);
if(op==1)
{
scanf("%d%d",&l,&r),ret=a0=a1=a2=0;
printf("%lld\n",query(1,1,n,l,r)+ret);
}
else
{
scanf("%d%d%d%d%d",&l,&r,&s,&t,&u);
update(1,1,n,l,r,s,t,u);
}
}
}

[ABC265G] 012 Inversion的更多相关文章

  1. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  2. 控制反转Inversion of Control (IoC) 与 依赖注入Dependency Injection (DI)

    控制反转和依赖注入 控制反转和依赖注入是两个密不可分的方法用来分离你应用程序中的依赖性.控制反转Inversion of Control (IoC) 意味着一个对象不会新创建一个对象并依赖着它来完成工 ...

  3. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  4. 依赖倒置原则(Dependency Inversion Principle)

    很多软件工程师都多少在处理 "Bad Design"时有一些痛苦的经历.如果发现这些 "Bad Design" 的始作俑者就是我们自己时,那感觉就更糟糕了.那么 ...

  5. HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)

    题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS     Memory Limit: 32768 K Description The inve ...

  6. Inversion Sequence(csu 1555)

    Description For sequence i1, i2, i3, … , iN, we set aj to be the number of members in the sequence w ...

  7. ACM: 强化训练-Inversion Sequence-线段树 or STL·vector

    Inversion Sequence Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%lld & %llu D ...

  8. ACM Minimum Inversion Number 解题报告 -线段树

    C - Minimum Inversion Number Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  9. HDU-Minimum Inversion Number(最小逆序数)

    Problem Description The inversion number of a given number sequence a1, a2, ..., an is the number of ...

  10. 【hdu1394】Minimum Inversion Number

    Problem Description The inversion number of a given number sequence a1, a2, ..., an is the number of ...

随机推荐

  1. Kafka入门学习

    什么是 Kafka Kafka 是由 Linkedin 公司开发的,它是一个分布式的,支持多分区.多副本,基于 Zookeeper 的分布式消息流平台,它同时也是一款开源的基于发布订阅模式的消息引擎系 ...

  2. 织梦tag怎么显示每个tag相应的文章数量

    有些时候我们想实现类似于wordpress那样的tag,就是在显示tag的链接和tag名的同时,还能显示每个tag关联的文章的数量.如下图所示: 这就需要修改/include/taglib/tag.l ...

  3. k8s添加节点报[WARNING SystemVerification]: missing optional cgroups: blkio

    环境信息: ubuntu-master01  192.1681.195.128 ubuntu-work01    192.168.195.129 k8s版本 1.25.2 背景描述:初始环境是一个ma ...

  4. 西门子300PLC转以太网无需编程实现与1200PLC转以太网数据交换

    西门子300PLC转以太网无需编程实现与1200PLC转以太网数据通信 本文介绍利用兴达易控生产的PLC转以太网模块(MPI-ETH-XD1.0Plus)实现1200/1500PLC与300(CPU3 ...

  5. SpringBoot WebSocket STOMP

    SpringBoot WebSocket STOMP 关键词:Springboot, WebSocket, STOMP, broadcast, sendToUser, MessageMapping, ...

  6. Azure Data Factory(九)基础知识回顾

    一,引言 在本文中,我们将继续了解什么是 Azure Data Factory,Azure Data Factory 的工作原理,Azure Data Factory 数据工程中的数据管道,并了解继承 ...

  7. xshell无法调用gdc

    现象: <topprod:/u1/topprod/tiptop> exe2 p_zzExecute program:p_zz<topprod:/u1/topprod/tiptop&g ...

  8. 深入理解Python虚拟机:super超级魔法的背后原理

    深入理解Python虚拟机:super超级魔法的背后原理 在本篇文章中,我们将深入探讨Python中的super类的使用和内部工作原理.super类作为Python虚拟机中强大的功能之一,super ...

  9. 机器学习从入门到放弃:硬train一发手写数字识别

    一.前言 前面我们了解了关于机器学习使用到的数学基础和内部原理,这一次就来动手使用 pytorch 来实现一个简单的神经网络工程,用来识别手写数字的项目.自己动手后会发现,框架里已经帮你实现了大部分的 ...

  10. Spring/SpringBoot中的声明式事务和编程式事务源码、区别、优缺点、适用场景、实战

    一.前言 在现代软件开发中,事务处理是必不可少的一部分.当多个操作需要作为一个整体来执行时,事务可以确保数据的完整性和一致性,并避免出现异常和错误情况.在SpringBoot框架中,我们可以使用声明式 ...