Pandas分组聚合
groupby分组操作详解
在数据分析中,经常会遇到这样的情况:根据某一列(或多列)标签把数据划分为不同的组别,然后再对其进行数据分析。比如,某网站对注册用户的性别或者年龄等进行分组,从而研究出网站用户的画像(特点)。在 Pandas 中,要完成数据的分组操作,需要使用 groupby() 函数,它和 SQL 的GROUP BY
操作非常相似。
在划分出来的组(group)上应用一些统计函数,从而达到数据分析的目的,比如对分组数据进行聚合、转换,或者过滤。这个过程主要包含以下三步:
- 拆分(Spliting):表示对数据进行分组;
- 应用(Applying):对分组数据应用聚合函数,进行相应计算;
- 合并(Combining):最后汇总计算结果。
下面对 groupby() 函数的应用过程进行具体的讲解。
创建DataFrame对象
首先我们创建一个 DataFrame 对象,下面数据描述了某班学生,计算机选修课的考试成绩:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
print(df)
输出结果:
Name score option_course
0 John 82 C#
1 Helen 98 Python
2 Sona 91 Java
3 Ella 87 C
创建groupby分组对象
使用 groupby() 可以沿着任意轴分组。您可以把分组时指定的键(key)作为每组的组名,方法如下所示:
- df.groupby("key")
- df.groupby("key",axis=1)
- df.groupby(["key1","key2"])
通过上述方法对 DataFrame 对象进行分组操作:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
print(df)
#生成分组groupby对象
print(df.groupby('score'))
输出结果:
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000021DE9A89640>
查看分组结果
1) groups查看分组结果
通过调用groups
属性查看分组结果:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby('score').groups)
输出结果:
{82: Int64Index([0], dtype='int64'),
87: Int64Index([3], dtype='int64'),
91: Int64Index([2], dtype='int64'),
98: Int64Index([1], dtype='int64')}
2) 多个列标签分组
当然也可以指定多个列标签进行分组,示例如下:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby(['Name','score']).groups)
输出结果:
{('Ella', 87): Int64Index([3], dtype='int64'),
('Helen', 98): Int64Index([1], dtype='int64'),
('John', 82): Int64Index([0], dtype='int64'),
('Sona', 91): Int64Index([2], dtype='int64')}
通过 get_group() 方法可以选择组内的具体数据项:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#根据score来分组
grouped=df.groupby('score')
#根据对应组的数据值,选择一个组
print(grouped.get_group(91))
输出结果:
Name score option_course
2 Sona 91 Java
遍历分组数据
通过以下方法来遍历分组数据,示例如下:
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
grouped=df.groupby('score')
for label, option_course in grouped:
#其中key代表分组后字典的键,也就是score
print(label)
#字典对应的值选修的科目
print(option_course)
输出结果:
82
Name score option_course
0 John 82 C#
87
Name score option_course
3 Ella 87 C
91
Name score option_course
2 Sona 91 Java
98
Name score option_course
1 Helen 98 Python
如上所示, groupby 对象的组名称与 score 中的的元素值一一对应。
应用聚合函数
当您在创建 groupby 对象时,通过 agg() 函数可以对分组对象应用多个聚合函数:
import pandas as pd
import numpy as np
data = {'name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)grouped=df.groupby('name')
#应用一个聚合函数求均值
print(grouped['score']).agg(np.mean)
输出结果:
name
Ella 87
Helen 98
John 82
Sona 91
Name: score, dtype: int64
当然,您也可以一次性应有多个聚合函数,示例如下:
import pandas as pd
import numpy as np
data = {'name': ['John', 'Helen', 'Sona', 'Ella'], 'score': [82, 98, 91, 87], 'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
grouped=df.groupby('name')
print(grouped['score'].agg([np.size,np.mean,np.std]))
输出结果:
size mean std
name
Ella 1 87 NaN
Helen 1 98 NaN
John 1 82 NaN
Sona 1 91 NaN
组的转换操作
在组的行或列上可以执行转换操作,最终会返回一个与组大小相同的索引对象。示例如下:
import pandas as pd
import numpy as np
df = pd.DataFrame({'种类':['水果','水果','水果','蔬菜','蔬菜','肉类','肉类'],
'产地':['朝鲜','中国','缅甸','中国','菲律宾','韩国','中国'],
'水果':['橘子','苹果','哈密瓜','番茄','椰子','鱼肉','牛肉'],
'数量':[3,5,5,3,2,15,9],
'价格':[2,5,12,3,4,18,20]})
#分组求均值,水果、蔬菜、肉类#对可执行计算的数值列求均值
print(df.groupby('种类').transform(np.mean))
#transform()直接应用demean,实现去均值操作
demean = lambda arr:arr-arr.mean()
print(df.groupby('种类').transform(demean))
#自定义函数# 返回分组的前n行数据
def get_rows(df,n):
#从1到n行的所有列
return df.iloc[:n,:]
#分组后的组名作为行索引
print(df.groupby('种类').apply(get_rows,n=1))
输出结果:
数量 价格
0 4.333333 6.333333
1 4.333333 6.333333
2 4.333333 6.333333
3 2.500000 3.500000
4 2.500000 3.500000
5 12.000000 19.000000
6 12.000000 19.000000
数量 价格
0 -1.333333 -4.333333
1 0.666667 -1.333333
2 0.666667 5.666667
3 0.500000 -0.500000
4 -0.500000 0.500000
5 3.000000 -1.000000
6 -3.000000 1.000000
种类 产地 水果 数量 价格
种类
水果 0 水果 朝鲜 橘子 3 2
肉类 5 肉类 韩国 鱼肉 15 18
蔬菜 3 蔬菜 中国 番茄 3 3
组的数据过滤操作
通过 filter() 函数可以实现数据的筛选,该函数根据定义的条件过滤数据并返回一个新的数据集。
下面,筛选出参加比赛超过两次的球队(包含两次):
import pandas as pd
import numpy as np
data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings', 'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[874,789,863,663,741,802,756,788,694,701,812,698]}
df = pd.DataFrame(data)
#定义lambda函数来筛选数据
print (df.groupby('Team').filter(lambda x: len(x) >= 2))
输出结果:
Team Rank Year Points
0 Riders 1 2014 874
1 Riders 2 2015 789
4 Kings 3 2014 741
6 Kings 1 2016 756
7 Kings 1 2017 788
8 Riders 2 2016 694
11 Riders 2 2017 698
Pandas分组聚合的更多相关文章
- Pandas 分组聚合
# 导入相关库 import numpy as np import pandas as pd 创建数据 index = pd.Index(data=["Tom", "Bo ...
- Python Pandas分组聚合
Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数. apply(),applymap()和map() apply()和applymap()是DataFrame ...
- Pandas 分组聚合 :分组、分组对象操作
1.概述 1.1 group语法 df.groupby(self, by=None, axis=0, level=None, as_index: bool=True, sort: bool=True, ...
- pandas分组聚合案例
美国2012年总统候选人政治献金数据分析 导入包 import numpy as np import pandas as pd from pandas import Series,DataFrame ...
- DataAnalysis-Pandas分组聚合
title: Pandas分组聚合 tags: 数据分析 python categories: DataAnalysis toc: true date: 2020-02-10 16:28:49 Des ...
- pandas分组和聚合
Pandas分组与聚合 分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:s ...
- Pandas分组运算(groupby)修炼
Pandas分组运算(groupby)修炼 Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby() ...
- Atitit 数据存储的分组聚合 groupby的实现attilax总结
Atitit 数据存储的分组聚合 groupby的实现attilax总结 1. 聚合操作1 1.1. a.标量聚合 流聚合1 1.2. b.哈希聚合2 1.3. 所有的最优计划的选择都是基于现有统计 ...
- ORACLE字符串分组聚合函数(字符串连接聚合函数)
ORACLE字符串连接分组串聚函数 wmsys.wm_concat SQL代码: select grp, wmsys.wm_concat(str) grp, 'a1' str from dual un ...
- SSRS 系列 - 使用带参数的 MDX 查询实现一个分组聚合功能的报表
SSRS 系列 - 使用带参数的 MDX 查询实现一个分组聚合功能的报表 SSRS 系列 - 使用带参数的 MDX 查询实现一个分组聚合功能的报表 2013-10-09 23:09 by BI Wor ...
随机推荐
- java基础-构建工具mvn-day20
目录 1. 初识mvn 2. 用maven创建工程 3. maven工程 之间的关系 4. 父子 mvn工程 5. mvn常见的插件 6. tomcat插件 1. 初识mvn mvn是一个项目构建工具 ...
- 使用python的os.walk()对目标路径进行遍历
需求背景 在使用python处理和扫描系统文件的过程中,经常要使用到目录或者文件遍历的功能,这里通过引入os.walk()的功能直接来实现这个需求. 使用示例 由于功能模块本身比较简单,这里直接提供一 ...
- VS中多个源文件中只运行其中特定文件
1.问题 有时候一个项目中创建了多个源文件,但是我只想运行其中的一个,一起运行就会出现多个main入口的问题 2.解决方式 2.1 右键要排除的文件,点击属性 2.2 从生成中排除一项中选择是即可 2 ...
- CSS - 使图片自适应
img { height: 100%; object-fit: cover; }
- [转帖]ipv6相关内核参数配置的优化实践
https://zhuanlan.zhihu.com/p/605217713 调整ARP缓存大小 这个参数通常需要在高负载的访问服务器上增加.比如繁忙的网络(或网关/防火墙 Linux 服务器),再比 ...
- Clickhouse 极简单机版本安装部署
Clickhouse 极简单机版本安装部署 摘要 Clickhouse的安装与部署其实比较简单. 但是为了能够更加简单的部署与使用. 尤其是能够可以方便的添加到镜像内进行运行. 所以记录一下方便快捷的 ...
- [转帖]Percolator - 分布式事务的理解与分析
https://zhuanlan.zhihu.com/p/261115166 Percolator - 分布式事务的理解与分析 概述 一个web页面能不能被Google搜索到,取决于它是否被Googl ...
- [转帖]Jmeter学习笔记(十一)——定时器
https://www.cnblogs.com/pachongshangdexuebi/p/11571524.html 默认情况下,Jmeter线程在发送请求之间没有间歇.不设置定时器,短时间内会产生 ...
- IO调度算法的简单学习与整理
IO调度算法的简单学习与整理 前言 前几天整理了 /sys/block/sda/queue/nr_requests 以及 /sys/block/sda/device/queue_depth 的两个参数 ...
- [转帖]漏洞预警|Apache Tomcat 信息泄露漏洞
http://www.hackdig.com/03/hack-953615.htm 棱镜七彩安全预警 近日网上有关于开源项目Apache Tomcat 信息泄露漏洞,棱镜七彩威胁情报团队第一时间探测到 ...