摘要:Raft算法是一种分布式共识算法,用于解决分布式系统中的一致性问题。

本文分享自华为云社区《共识算法之Raft算法模拟数》,作者: TiAmoZhang 。

01、Leader选举

存在A、B、C三个成员组成的Raft集群,刚启动时,每个成员都处于Follower状态,其中,成员A心跳超时为110ms,成员B心跳超时为150ms,成员C心跳超时为130ms,其他相关信息如图1所示。

■ 图1 Raft模拟初始状态

由于集群中不存在Leader,A、B、C三个成员都不会收到来自Leader的心跳信息。其中,成员A的超时最短,最先进入选举状态,修改自己的状态为Candidate,并增加自己的任期编号为1,发起请求投票消息,如图2所示。

■ 图2 请求投票

成员A通过RequestVote广播自己的选票给成员B、C,选票描述了成员A所拥有的数据,其包含成员A所处的term及最新的日志索引。成员B、C根据投票规则处理RequestVote消息。

term大的成员拒绝投票给term小的成员。

日志索引大的成员拒绝投票给日志索引小的成员。

一个term内只投出一张选票,采用先来先获得投票的原则。

很明显,成员B、C的term小于成员A的term,也不存在比成员A日志索引更大的日志索引,并且term为1的选票还没有投给其他成员,因此成员B、C将term为1的选票投给成员A并更新自己的term为1。

成员A获得包括自己在内的3张选票,赢得大多数选票,成员A晋升为Leader,并向其他成员发送心跳信息,维护自己的领导地位,如图3所示。

■ 图3 Leader晋升示意

如果成员A在等待投票超过约定的时间内没有收到多数派的选票,则会重置自己的超时,并结束本次选举进程。接着会有其他成员在等待心跳超时后发起Leader选举,在当前案例中,发起Leader选举的顺序为A→C→B。

可能因为网络问题,使集群中的所有成员又发起了一轮选举,但是都没有获得多数派的选票,因此会随机产生新的超时,开始下一个循环的选举。

02、日志复制

日志复制是一个一阶段协商的过程,其中,日志项的提交操作由下一轮协商或者心跳消息来代替完成。因此处理事务请求,Raft只需要发送一轮AppendEntries消息即可。

AppendEntries消息除了会包含需要复制日志项的相关信息外,通常会携带Leader的committedIndex参数,标示着最后一个已提交的日志索引。每个Follower的本地都维护了committedIndex,Follower可以对比Leader的committedIndex来推进自己的提交操作。

接着如图3所示的示例,一个三个成员组成的集群,成员A为Leader,成员B和C为Follower,并且在集群中未提交任何日志项。Leader收到客户端发送的Add请求后,Leader和Follower依次执行以下步骤,如图4所示。

■ 图4 日志复制-复制

(1)Leader将其封装成日志项追加到本地的日志中,日志索引为1。

(2)Leader通过AppendEntries(0, <1, Add>)消息时将日志项广播给所有的Follower。其中:

  • 第一个参数为committedIndex,即Leader最后提交的日志索引。
  • 第二个参数为Leader所处的日志索引,即Add日志项的索引。
  • 第三个参数为事务操作指令,即客户端的指令。

(3)Follower收到消息,将日志项追加到本地的日志中。

此时,成员A、B、C都拥有日志项Add且都已在索引为1上完成了持久化。Follower在处理完AppendEntries消息后需要回复ACK消息给Leader,代表接受该日志项。Leader收到多数派的ACK消息后,可以在本地提交该日志项并执行状态转移,之后将执行结果返回给客户端,如图5所示。

■ 图5 日志复制-回复

在当前场景中,成员A提交了索引为1的日志项,成员B、C仅仅拥有索引为1的日志项的所有信息但并未提交。成员B、C需要等待下一次AppendEntries消息,根据其committedIndex推进索引为1的日志项的提交操作。以心跳的AppendEntries消息为例,该AppendEntries消息仅携带了committedIndex,此时Leader已经提交了索引为1的日志项,因此committedIndex为1。Follower则可以提交索引为1及其之前的所有日志项,如图6所示。

■ 图6 日志复制-心跳

03、日志对齐

我们使用<term, logIndex>表示一个日志项,如表1所示为Follower E的日志索引3和Follower D的日志索引4,与当前Leader处理不一致的情况。出现这种情况可能是Follower E和Follower D曾经当选过Leader,并且在自己的term上提出了日志索引为3和4的日志项后立即宕机造成的。

■ 表1 日志对齐

要使Follower E和Follower D与Leader数据保持一致,大致步骤分为两步:寻找nextIndex,复制nextIndex及其之后的日志项。在Raft中,这个步骤均可由AppendEntries消息来完成。这里以Follower E成员为例,交互细节如下:

(1)Leader为Follower E初始化nextIndex,nextIndex=lastLogIndex+1,即nextIndex=6+1=7。

(2)Leader通过AppendEntries发送探测消息,携带preLogIndex(nextIndex-1)及preLogTerm,其中,preLogIndex=6,preLogTerm=3。

(3)Follower收到探测消息,对比索引为6的日志项,返回失败的响应给Leader并携带lastLogIndex=3。

(4)Leader收到失败的响应,更新nextIndex=lastLogIndexmsg+1,即nextIndex=4。

(5)Leader发送下一轮的探测消息,其中,preLogIndex=3,preLogTerm=2。

(6)Follower收到探测消息,对比索引为3的日志项,返回失败的响应给Leader并携带lastLogIndex=3。

(7)Leader收到失败的响应,此时lastLogIndexmsg+1 ≤ nextIndex,则nextIndex单调递减为3。

(8)Leader发送下一轮的探测消息,其中,preLogIndex=2,preLogTerm=1。

(9)Follower收到探测消息,对比索引为2的日志项,返回探测成功的响应给Leader。

(10)Leader在成功探测到nextIndex之后,通过AppendEntries消息从nextIndex开始发送索引为3的日志项给Follower。

(11)Follower将以Leader的数据为准,覆盖本地的日志项并返回处理成功的响应给Leader。

(12)Leader收到成功响应后,单调递增nextIndex,继续发送下一个日志项。直到nextIndex等于Leader的lastLogIndex,意味着该Follower拥有Leader所有的数据,本次日志对齐即完成。

点击关注,第一时间了解华为云新鲜技术~

详解共识算法的Raft算法模拟数的更多相关文章

  1. 分布式共识算法 (三) Raft算法

    系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.引子 1.1 介绍 Raft 是一种为了管 ...

  2. 分布式一致性算法:Raft 算法(论文翻译)

    Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻译,希望能有助于读者更方便地理解 raft 的 ...

  3. 【转】分布式一致性算法:Raft 算法(Raft 论文翻译)

    编者按:这篇文章来自简书的一个位博主Jeffbond,读了好几遍,翻译的质量比较高,原文链接:分布式一致性算法:Raft 算法(Raft 论文翻译),版权一切归原译者. 同时,第6部分的集群成员变更读 ...

  4. 详解 volatile关键字 与 CAS算法

    (请观看本人博文 -- <详解 多线程>) 目录 内存可见性问题 volatile关键字 CAS算法: 扩展 -- 乐观锁 与 悲观锁: 悲观锁: 乐观锁: 在讲解本篇博文的知识点之前,本 ...

  5. 详解十大经典数据挖掘算法之——Apriori

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第19篇文章,我们来看经典的Apriori算法. Apriori算法号称是十大数据挖掘算法之一,在大数据时代威风无两,哪 ...

  6. 详解十大经典机器学习算法——EM算法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法. EM算法的英文全称是Expectation-maximization al ...

  7. Redis中算法之——Raft算法

    Sentinel系统选举领头的方法是对Raft算法的领头选举方法的实现. 在分布式系统中一致性是很重要的.1990年Leslie Lamport提出基于消息传递的一致性算法Paxos算法,解决分布式系 ...

  8. 详解BarTender符号体系特殊选项之“行数”

    上面两篇文章小编和大家分享了BarTender符号体系特殊选项中的“行高”和“列”.此外,某些二维 (2D) 符号体系的结构为多个信息行,每一行看上去都像一个非常窄的条形码. 例如,以下图像是含 3 ...

  9. ulimit 命令详解 socket查看linux最大文件打开数

    ulimit 命令详解     Linux对于每个用户,系统限制其最大进程数.为提高性能,可以根据设备资源情况,设置各linux 用户的最大进程数 可以用ulimit -a 来显示当前的各种用户进程限 ...

  10. Lua5.4源码剖析:二. 详解String数据结构及操作算法

    概述 lua字符串通过操作算法和内存管理,有以下优点: 节省内存. 字符串比较效率高.(比较哈希值) 问题: 相同的字符串共享同一份内存么? 相同的长字符串一定不共享同一份内存么? lua字符串如何管 ...

随机推荐

  1. 写一个 Hello SpringBoot2 项目

    需求:向浏览发送/hello请求,并响应 Hello,Spring Boot 2 解决: 项目目录:controller层.Main启动项.pom.xml controller层:写好逻辑跳转,当浏览 ...

  2. mysql运维------分库分表

    1. 介绍 问题分析: 随着互联网以及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存储,存在以下性能瓶颈: IO瓶颈:热点数据太多,数据库缓存不足,产生大量磁盘IO,效率 ...

  3. 用Abp实现找回密码和密码强制过期策略

    @ 目录 重置密码 找回密码 发送验证码 校验验证码 发送重置密码链接 创建接口 密码强制过期策略 改写接口 Vue网页端开发 重置密码页面 忘记密码控件 密码过期提示 项目地址 用户找回密码,确切地 ...

  4. Redis(七)缓存穿透、缓存击穿、缓存雪崩以及分布式锁

    应用问题解决 1 缓存穿透 1.1 访问结构 正常情况下,服务器接收到浏览器发来的web服务请求,会先去访问redis缓存,如果缓存中存在数据则直接返回,否则会去查询数据库里面的数据,然后保存在red ...

  5. Restless API 与 Restful API

    Restful  API: 1.CURD(增删改查) 由请求方式决定 2.请求方式有:get/post/delete/put 3.同一个路径可以进行多个操作 Restless API 1.CURD(增 ...

  6. React Native组件(二)

    一.创建一个项目 1.1.找到目标目录cmd命令,请尽量不要有中文路径 npx react-native init reactnative03 进入文件 cd reactnative03 启动 npx ...

  7. 微软出品的UI自动化测试工具Playwright(三)

    微软出品的UI自动化测试工具Playwright(三) 网址 说明 https://playwright.dev/ 官网首页 https://playwright.dev/python/docs/in ...

  8. GitLab 配置优化

    代码库最近换了,使用了 GitLab.这两天观察了下服务器的使用情况,发现 GitLab 很吃内存.直接占用了 30 多个G的内存. 一.发现问题 使用 top 命令查看内存时,发现前几十个都是同一个 ...

  9. 在循环内调用 size() 方法的开销大吗?

    for (int i = 0; i < buildings.size(); i++) {} 和 int n = buildings.size(); for (int i = 0; i < ...

  10. Java8 Stream流的合并

    最近的需求里有这样一个场景,要校验一个集合中每个对象的多个Id的有效性.比如一个Customer对象,有3个Id:id1,id2,id3,要把这些Id全部取出来,然后去数据库里查询它是否存在. @Da ...