OpenCV开发笔记(五十七):红胖子8分钟带你深入了解直方图反向投影(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载
原博主博客地址:https://blog.csdn.net/qq21497936
原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062
本文章博客地址:https://blog.csdn.net/qq21497936/article/details/106200662
各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究
红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中…(点击传送门)
上一篇:《OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)》
下一篇:持续补充中…
前言
红胖子,来也 !
做了部分人脸识别后,又回到直方图相关的研究-直方图方向投影。
Demo
直方图
直方图反向投影
概述
反向投影是计算像素和直方图模型中像素吻合度的一种方法。
通俗来说,就是用已知一个对象的直方图模型去目标图像中寻找是否有相似的对象。例如,如果有肤色的直方图,可以使用反向投影来在图像中寻找肤色区域。
有一点需要注意,反向投影中一般使用HSV色彩空间,使用HS两个通道直方图模型去进行匹配计算。
关于HSV颜色空间
HSV是一种将RGB色彩空间中的点在倒圆锥体中的表示方法。HSV即色相(Hue)、饱和度(Saturation)、明度(Value),又称HSB(B即Brightness)。色相是色彩的基本属性,就是平常说的颜色的名称,如红色、黄色等。饱和度(S)是指色彩的纯度,越高色彩越纯,低则逐渐变灰,取0-100%的数值。明度(V),取0-max(计算机中HSV取值范围和存储的长度有关)。HSV颜色空间可以用一个圆锥空间模型来描述。
- 圆锥的顶点处,V=0,H和S无定义,代表黑色;
- 圆锥的顶面中心处V=max,S=0,H无定义,代表白色;
反向投影原理
- 步骤一:先将已知的图片进行颜色空间转换为HSV颜色空间;
- 步骤二:对H通道进行单元划分起二维空间上计算对应直方图;
- 步骤三:计算直方图空间上的最大值,并进行归一化绘制响应的直方图信息;
- 步骤四:计算反向投影图像;
计算反向投影函数原型
/** @overload */
void calcBackProject( const Mat* images,
int nimages,
const int* channels,
const SparseMat& hist,
OutputArray backProject,
const float** ranges,
double scale = 1,
bool uniform = true );
/** @overload */
void calcBackProject( InputArrayOfArrays images,
const std::vector<int>& channels,
InputArray hist,
OutputArray dst,
const std::vector<float>& ranges,
double scale );
void calcBackProject( const Mat* images,
int nimages,
const int* channels,
InputArray hist,
OutputArray backProject,
const float** ranges,
double scale = 1,
bool uniform = true );
- 参数一:const Mat*类型的images,输入的数组(或数组集),它们须为相同的深度(CV_8U或CV_32F)和相同的尺寸,而通道数则可以任意;
- 参数二:int类型的nimages,输入数组的个数,也就是第一个参数中存放了多少张image;
- 参数三:const int*类型的channels,需要统计的通道(dim)索引。第一个数组通道从0到images[0].channels()-1,而第二个数组通道从images[0].channels()到images[0].channels()+images[1].channels()–1;
- 参数四:InputArray类型的hist,输入的直方图;
- 参数五:OutputArray类型的backProject,目标反向投影阵列,其须为单通道,并且和image[0]有相同的大小和深度;
- 参数六:const float**类型的ranges,表示每一个维度数组(第六个参数dims)的每一维的边界阵列,可以理解为每一维数值的取值范围;
- 参数七:double类型的scale,有默认值1,输出的方向投影可选的缩放因子;
- 参数八:bool类型的uniform,指示直方图是否均匀的标识符,有默认值true;
Demo源码
void OpenCVManager::testCalcBackProject()
{
QString fileName1 =
"E:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/19.jpg";
cv::Mat srcMat = cv::imread(fileName1.toStdString());
cv::Mat dstMat;
int width = 400;
int height = 300;
cv::resize(srcMat, srcMat, cv::Size(width, height));
cv::String windowName = _windowTitle.toStdString();
cvui::init(windowName);
cv::Mat windowMat = cv::Mat(cv::Size(srcMat.cols * 2,
srcMat.rows * 2),
srcMat.type());
cv::Mat allMat = cv::Mat(srcMat.rows, srcMat.cols, srcMat.type());
allMat = cv::Scalar(0, 0, 0);
int bins = 255;
while(true)
{
// 刷新全图黑色
windowMat = cv::Scalar(0, 0, 0);
// 原图复制
cv::Mat mat = windowMat(cv::Range(srcMat.rows * 0, srcMat.rows * 1),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, srcMat, 1.0f, 0.0f, mat);
{
// 步骤一:先将已知的图片进行颜色空间转换为HSV颜色空间;
cv::Mat hsvMat;
cv::cvtColor(srcMat, hsvMat, cv::COLOR_BGR2HSV);
// 步骤二:对H和S通道进行分离,计算H上的直方图;
cv::Mat hueMat;
hueMat.create(hsvMat.size(), hsvMat.depth());
int channel[] = {0, 0};
cv::mixChannels(&hsvMat, 1, &hueMat, 1, channel, 1);
// 步骤三:计算直方图空间上的最大值,并进行归一化绘制响应的直方图信息;
// 调整bins值2~255
cvui::printf(windowMat, 75 + width * 1, 20 + height * 0, "thresh");
cvui::trackbar(windowMat, 75 + width * 1, 40 + height * 0, 165, &bins, 2, 255);
cv::MatND hueHistMat;
int histSize = MAX(bins, 2);
float hueRange[] = {0, 180};
const float *ranges = {hueRange};
cv::calcHist(&hueMat, 1, 0, cv::Mat(), hueHistMat, 1, &histSize, &ranges, true, false);
cv::normalize(hueHistMat, hueHistMat, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());
// 步骤四:计算反向投影图像
cv::MatND backprojectMat;
cv::calcBackProject(&hueMat, 1, 0, hueHistMat, backprojectMat, &ranges, 1, true);
// copy显示
mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::cvtColor(backprojectMat, dstMat, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, dstMat, 1.0f, 0.0f, mat);
// 对直方图进行均衡化
mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::equalizeHist(backprojectMat, dstMat);
cv::cvtColor(dstMat, dstMat, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, dstMat, 1.0f, 0.0f, mat);
}
// 更新
cvui::update();
// 显示
cv::imshow(windowName, windowMat);
// esc键退出
if(cv::waitKey(25) == 27)
{
break;
}
}
}
工程模板:对应版本号v1.51.0
对应版本号v1.51.0
上一篇:《OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)》
下一篇:持续补充中…
原博主博客地址:https://blog.csdn.net/qq21497936
原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062
本文章博客地址:https://blog.csdn.net/qq21497936/article/details/106200662
OpenCV开发笔记(五十七):红胖子8分钟带你深入了解直方图反向投影(图文并茂+浅显易懂+程序源码)的更多相关文章
- OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(五十五):红胖子8分钟带你深入了解Haar、LBP特征以及级联分类器识别过程(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(六十四):红胖子8分钟带你深入了解SURF特征点(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(七十一):红胖子8分钟带你深入级联分类器训练
前言 红胖子,来也! 做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了. 识别可以自己写模板匹配.特征 ...
- OpenCV开发笔记(七十二):红胖子8分钟带你使用opencv+dnn+tensorFlow识别物体
前言 级联分类器的效果并不是很好,准确度相对深度学习较低,本章使用opencv通过tensorflow深度学习,检测已有模型的分类. Demo 可以猜测,1其实是人,18序号类是狗 ...
- OpenCV开发笔记(七十三):红胖子8分钟带你使用opencv+dnn+yolov3识别物体
前言 级联分类器的效果并不是很好,准确度相对深度学习较低,上一章节使用了dnn中的tensorflow,本章使用yolov3模型,识别出具体的分类. Demo 320x320,置信度0 ...
- OpenCV开发笔记(七十四):OpenCV3.4.1+ffmpeg3.4.8交叉编译移植到海思平台Hi35xx平台
前言 移植opencv到海思平台,opencv支持对视频进行解码,需要对应的ffmpeg支持. Ffmpeg的移植 Ffmpeg的移植请参考之前的文章:<FFmpeg开发笔记(十): ...
- Django开发笔记五
Django开发笔记一 Django开发笔记二 Django开发笔记三 Django开发笔记四 Django开发笔记五 Django开发笔记六 1.页面继承 定义base.html: <!DOC ...
随机推荐
- Stress-ng 的简单学习
背景 想研究一下国产和不同架构,不通型号CPU的算力 也作为后续生产交付的基线准备. 学习各种不同工具进行简要测试. 安装 git clone https://github.com/ColinIanK ...
- SMEE 国内最新光刻机
- [译]深入了解现代web浏览器(四)
本文是根据Mariko Kosaka在谷歌开发者网站上的系列文章https://developer.chrome.com/blog/inside-browser-part4/翻译而来,共有四篇,该篇是 ...
- postman中monitor的使用
monitor就是一个摸鱼的功能,我们把写好的接口部署到postman的web服务器中, 绑定自己的邮箱,运行结果会发送到自己的邮箱中,不用实时监控,是个非常方便 的功能(不安全) 1.crete a ...
- 使用Java读取Excel文件数据
通过编程方式读取Excel数据能实现数据导入.批量处理.数据比对和更新等任务的自动化.这不仅可以提高工作效率还能减少手动处理的错误风险.此外读取的Excel数据可以与其他系统进行交互或集成,实现数据的 ...
- kettle系统列文章01---安装与配置
1).到官网下载需要安装的kettle版本,目前最新版本4.2,官网地址:http://kettle.pentaho.org,我们是使用的版本是kettle3.2 2).本地安装jdk 1.4或以上版 ...
- Govulncheck v1.0.0 发布了!
原文在这里 原文作者:Julie Qiu, for the Go security team 发布于 13 July 2023 我们很高兴地宣布,govulncheck v1.0.0 已经发布,同时还 ...
- 【七】强化学习之Policy Gradient---PaddlePaddlle【PARL】框架{飞桨}
相关文章: [一]飞桨paddle[GPU.CPU]安装以及环境配置+python入门教学 [二]-Parl基础命令 [三]-Notebook.&pdb.ipdb 调试 [四]-强化学习入门简 ...
- 【4】配置和运行Opencv常见的一些问题总结,以及bug解决。
相关文章: [1]windows下安装OpenCV(4.3)+VS2017安装+opencv_contrib4.3.0配置 [2]Visual Studio 2017同时配置OpenCV2.4 以及O ...
- 5.12 汇编语言:仿写While循环语句
循环语句(While)一种基本控制结构,它允许程序在条件为真的情况下重复执行一段代码块,直到条件为假为止.循环语句在处理需要重复执行的任务时非常有用,它可以让程序更加高效地处理大量数据或者重复性操作. ...