MicroNet: 低秩近似分解卷积以及超强激活函数,碾压MobileNet | 2020新文分析
论文提出应对极低计算量场景的轻量级网络MicroNet,包含两个核心思路Micro-Factorized convolution和Dynamic Shift-Max,Micro-Factorized convolution通过低秩近似将原卷积分解成多个小卷积,保持输入输出的连接性并降低连接数,Dynamic Shift-Max通过动态的组间特征融合增加节点的连接以及提升非线性,弥补网络深度减少带来的性能降低。从实验结果来看,MicroNet的性能十分强劲
来源:晓飞的算法工程笔记 公众号
论文: MicroNet: Towards Image Recognition with Extremely Low FLOPs
Introduction
论文将研究定义在一个资源十分紧张的场景:在6MFLOPs的限定下进行分辨率为224x224的1000类图片分类。对于MobileNetV3,原版的计算量为112M MAdds,将其降低至12M MAdds时,top-1准确率从71.7%降低到了49.8%。可想而知,6M MAdds的场景是十分苛刻的,需要对网络进行细心的设计。常规的做法可直接通过降低网络的宽度和深度来降低计算量,但这会带来严重的性能下降。
为此,论文在设计MicroNet时主要遵循两个设计要领:1)通过降低特征节点间的连通性来避免网络宽度的减少。2)通过增强非线性能力来补偿网络深度的减少。MicroNet分别提出了Micro-Factorized Convolution和Dynamic Shift-Max来满足上述两个原则,Micro-Factorized Convolution通过低秩近似减少输入输出的连接数但不改变连通性,而Dynamic Shift-Max则是更强有力的激活方法。从实验结果来看,仅需要6M MAdds就可以达到53.0%准确率,比12M MAdds的MobileNetV3还要高。
Micro-Factorized Convolution
Micro-Factorized Convolution主要是对MobileNet的深度分离卷积进行更轻量化的改造,对pointwise convolution和depthwise convolution进行低秩近似。
Micro-Factorized Pointwise Convolution
论文将pointwise convoluton分解成了多个稀疏的卷积,如上图所示,先对输入进行维度压缩,shuffle后进行维度扩展,个人感觉这部分与shufflenet基本一样。这样的操作在保证输入与输出均有关联的情况下,使得输入与输出之间的连接数减少了很多。
假定卷积核\(W\)的输入输出维度相同,均为\(C\),Micro-Factorized Convolution可公式化为:
\(W\)为\(C\times C\)矩阵,\(Q\)为\(C\times \frac{C}{R}\)矩阵,用于压缩输入,\(P\)为\(C\times \frac{C}{R}\)矩阵,用于扩展输出,\(Q\)和\(P\)均为包含\(G\)个块的对角矩阵。\(\Phi\)为\(\frac{C}{R}\times \frac{C}{R}\)排列矩阵,功能与shufflenet的shuffle channels操作一样。分解后的计算复杂度为\(\mathcal{O}=\frac{2C^2}{RG}\),上图展示的参数为\(C=18\),\(R=2\),\(G=3\)。\(G\)的大小由维度\(C\)和下降比例\(R\)而定:
公式2是由维度数\(C\)与每个输出维度对应输入维度的连接数\(E\)之间的关系推导所得,每个输出维度与\(\frac{C}{RG}\)个中间维度连接,每个中间维度与\(\frac{C}{G}\)个输入维度连接,因此\(E=\frac{C^2}{RG^2}\)。假如固定计算复杂度\(\mathcal{O}=\frac{2C^2}{RG}\)和压缩比例R,得到:
公式3的可视化如图3所示,随着\(G\)和\(C\)的增加,\(E\)在减少。在两者的交点\(G=\sqrt{C/R}\)处,每个输出维度刚好只与每个输入维度连接了一次,其中\(\Phi\)的shuffle作用很大。从数学上来说,矩阵\(W\)可分为\(G\times G\)个秩为1的小矩阵,从小节开头处的分解示意图可看出,矩阵\(W\)中\((i,j)\)小矩阵实际为\(P\)矩阵的\(j\)列与\(Q^T\)的\(j\)行的矩阵相乘结果(去掉空格)。
Micro-Factorized Depthwise Convolution
论文将\(k\times k\)深度卷积分解为\(k\times 1\)卷积与\(1\times k\)卷积,计算与公式1类似,\(\Phi\)为标量1,如上图所示,可将计算复杂度从\(\mathcal{O}(k^2C)\)降低为\(\mathcal{O}(kC)\)。
Combining Micro-Factorized Pointwise and Depthwise Convolutions
论文提供了两种Micro-Factorized Pointwise Convolution和Micro-Factorized Depthwise Convolution的组合方法:
- 常规组合,直接将两种操作进行组合,这种情况下,两种操作的输入输出维度都是\(C\)。
- lite组合,如上图所示,增加Micro-Factorized Depthwise Convolution的卷积核数,对输入进行维度扩展,然后用Micro-Factorized Pointwise Convolution进行维度压缩。
相对于常规组合,lite组合的计算更高效,由于减少了Pointwise卷积的计算量,足以弥补depthwise卷积核的增加。
Dynamic Shift-Max
论文提出Dynamic Shift-Max融合输入特征,综合输出维度对应的各分组的特征(循环偏移)进行非线性输出。由于Micro-Factorized pointwise convolution仅关注分组内的连接,Dynamic Shift-Max可作为其补充。
Definition
定义\(C\)维输入向量\(x=\{x_i\}(i=1,\cdots, C)\),将输入分为\(G\)组,每组包含\(\frac{C}{G}\)维,\(N\)维向量的循环偏移可表示为\(x_N(i)=x_{(i+N)} mod\ C\),将维度循环偏移扩展到分组循环偏移:
\(x_{\frac{C}{G}}(i,j)\)对应第\(i\)维输入\(x_i\)关于\(j\)分组的偏移, Dynamic Shift-Max将多个(\(J\))分组偏移进行结合:
\(a^k_{i,j}(x)\)为输入相关的参数,可由平均池化接两个全连接层简单实现。对于输出\(y_i\),将对应每个分组的偏移维度进行\(K\)次融合,每次融合都有专属的\(a^k_{i,j}(x)\)参数,最后取融合结果的最大值。
Non-linearity
Dynamic Shift-Max提供了两方面的非线性:
- 输出\(K\)个的融合\(J\)个分组维度的结果中的最大值,类似于考虑多种目标特征
- 参数\(a^k_{i,j}(x)\)是输入相关的函数,这是动态的
上述两个特性使得Dynamic Shift-Max表达能力更强,能够弥补网络深度减少带来的损失。最近提出的dynamic ReLU可认为是Dynamic Shift-Max的\(J=1\)特例,仅考虑每个维度自身。
Connectivity
Dynamic Shift-Max能够提升组间的维度交流,弥补MicroFactorized pointwise convolution只专注于组内连接的不足。图4为简单的静态分组偏移\(y_i=a_{i,0}x_{\frac{C}{G}}(i,0)+a_{i,1}x_{\frac{C}{G}}(i,1)\),\(K=1\),\(J=2\)以及固定的\(a^k_{i,j}\),注意排列矩阵\(\Phi\)与前面的不太一样。可以看到,尽管这样的设计很简单,但依然能够有效地提升输入输出的关联性(矩阵\(W\)的秩也从1升为2)。
Computational Complexity
Dynamic Shift-Max包含\(CJK\)个参数\(a^k_{i,j}\),计算复杂度包含3部分:
- 平均池化(后面的两个全连接输出输出为1,可忽略):\(\mathcal{O}(HWC)\)
- 生成公式5的参数\(a^k_{i,j}(x)\):\(\mathcal{O}(C^2JK)\)
- 对每个维度和特征图位置进行Dynamic Shift-Max: \(\mathcal{O}(HWCJK)\)
当\(J\)和\(K\)很小时,整体的计算量会很轻量,论文设置为\(J=2\)以及\(K=2\)。
MicroNet Architecture
论文设计了3种不同的Mircro-Block,里面均包含了Dynamic Shift-Max作为激活函数:
- Micro-Block-A:使用lite组合,对分辨率较高的低维特征特别有效。
- Micro-Block-B:在Micro-Block-A基础上加了一个 MicroFactorized pointwise convolution进行维度扩展,每个MicroNet仅包含一个Micro-Block-B。
- Micro-Block-C:与Micro-Block-B类似,将lite组合替换为常规组合,能够集中更多的计算在维度融合,如果输入输出维度一样,则增加旁路连接。
MicroNet的结构如表1所示,需要注意的是两种卷积的分组数\(G_1\)和\(G_2\),论文将公式2的约束改为\(G_1G_2=C/R\)。
Experiments: ImageNet Classification
ImageNet上的结果。
从MobileNet到MicroNet的修改对比,每个修改的提升都很大,论文还有很多关于各模块的超参数对比实验,由兴趣的可以去看看。
Conclusion
论文提出应对极低计算量场景的轻量级网络MicroNet,包含两个核心思路Micro-Factorized convolution和Dynamic Shift-Max,Micro-Factorized convolution通过低秩近似将原卷积分解成多个小卷积,保持输入输出的连接性并降低连接数,Dynamic Shift-Max通过动态的组间特征融合增加节点的连接以及提升非线性,弥补网络深度减少带来的性能降低。从实验结果来看,MicroNet的性能十分强劲。
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】
MicroNet: 低秩近似分解卷积以及超强激活函数,碾压MobileNet | 2020新文分析的更多相关文章
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- HAWQ + MADlib 玩转数据挖掘之(四)——低秩矩阵分解实现推荐算法
一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等. ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- 低秩近似 low-rank approximation
- 【RS】Local Low-Rank Matrix Approximation - LLORMA :局部低秩矩阵近似
[论文标题]Local Low-Rank Matrix Approximation (icml_2013 ) [论文作者]Joonseok Lee,Seungyeon Kim,Guy Lebanon ...
- 低秩稀疏矩阵恢复|ADM(IALM)算法
一曲新词酒一杯,去年天气旧亭台.夕阳西下几时回? 无可奈何花落去,似曾相识燕归来.小园香径独徘徊. ---<浣溪沙·一曲新词酒一杯>--晏殊 更多精彩内容请关注微信公众号 "优化 ...
- DyLoRA:使用动态无搜索低秩适应的预训练模型的参数有效微调
又一个针对LoRA的改进方法: DyLoRA: Parameter-Efficient Tuning of Pretrained Models using Dynamic Search-Free Lo ...
- 学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层
CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有 ...
- 【python实现卷积神经网络】激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus)
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception
近年提出的四个轻量化模型进行学习和对比,四个模型分别是:SqueezeNet.MobileNet.ShuffleNet.Xception. SqueezeNet https://arxiv.org/p ...
随机推荐
- Go 和 Colly笔记
Colly是Go下功能比较完整的一个HTTP客户端工具. 安装 Win10 下载zip包, 直接解压至c:根目录. 如果不打算直接命令行使用, 可以不配置环境变量 Ubuntu 下载tar.gz, 解 ...
- jq中的正则
正则匹配表达式 \w \s \d \b . 匹配除换行符以外的任意字符 \w 匹配字母或数字或下划线或汉字 等价于 '[A-Za-z0-9_]'. \s 匹配任意的空白符 \d 匹配数字 \b 匹配单 ...
- 【Azure Key Vault】Key Vault能不能生成DigiCert证书?能不能自动 Rotate 证书呢?
问题描述 因为Azure Key Vault服务上保管的证书可以轻松的与其他Azure服务集成使用,所以需要知道 Key Vault 能不能生成 DigiCert 证书?能不能自动 Rotate 证书 ...
- 【Azure Developer】使用Key Vault的过程中遇见的AAD 认证错误
在使用应用程序访问Key Vault获取密钥信息时,现后遇见了多种认证错误.使用的代码为: String keyVaultUrl = "https://test-xxx.vault.azur ...
- cw attack
- 《Document-level Relation Extraction as Semantic Segmentation》论文阅读笔记
原文 代码 摘要 本文研究的是文档级关系抽取,即从文档中抽取出多个实体之间的关系.现有的方法主要是基于图或基于Transformer的模型,它们只考虑实体自身的信息,而忽略了关系三元组之间的全局信息. ...
- Android\C++\C#\Java
关于:(38条消息) 千万不能错过的Android NDK下载安装及配置_石子君的博客-CSDN博客_android ndk下载 (38条消息) Android扩展知识 - so文件生成及其使用_L- ...
- SpringCloud Ribbon和Feign 的使用和源码分析
1. Ribbon 介绍 Ribbon 是 Netflix 公司开源的一款 客户端 负载均衡软件,并被SpringCloud集成 作为SpringCloud 负载均衡的工具 服务端负载均衡 : 即在服 ...
- Redis之数据持久化小结
一.概述 Redis作为内存型的数据库,虽然很快,依然有着很大的隐患,一旦服务器宕机重启,内存中数据还会存在吗? 很容易想到的一个方案是从后台数据恢复这些数据,如果数据量很小,这倒是一个可行的方案.但 ...
- (转载)Transfer-Encoding:chunked详解
原文链接:Transfer-Encoding:chunked详解_transfer-encoding: chunked_公众号:流花鬼的博客-CSDN博客 概念 分块传输编码(Chunked tran ...