N bulbs

 Accepts: 408
 Submissions: 1224
 Time Limit: 10000/5000 MS (Java/Others)
 Memory Limit: 65536/65536 K (Java/Others)
Problem Description

N bulbs are in a row from left to right,some are on, and some are off.The first bulb is the most left one. And the last one is the most right one.they are numbered from 1 to n,from left to right.

in order to save electricity, you should turn off all the lights, but you're lazy. coincidentally,a passing bear children paper(bear children paper means the naughty boy), who want to pass here from the first light bulb to the last one and leave.

he starts from the first light and just can get to the adjacent one at one step. But after all,the bear children paper is just a bear children paper. after leaving a light bulb to the next one, he must touch the switch, which will change the status of the light.

your task is answer whether it's possible or not to finishing turning off all the lights, and make bear children paper also reach the last light bulb and then leave at the same time.

Input

The first line of the input file contains an integer T, which indicates the number of test cases.

For each test case, there are 2 lines.

The first line of each test case contains 1 integers n.

In the following line contains a 01 sequence, 0 means off and 1 means on.

  • 1 \leq T \leq 101≤T≤10
  • 1 \leq N \leq 10000001≤N≤1000000
Output

There should be exactly T lines in the output file.

The i-th line should only contain "YES" or "NO" to answer if it's possible to finish.

Sample Input
1
5
1 0 0 0 0
Sample Output
YES
Hint

Child's path is: 123234545 all switchs are touched twice except the first one.

题解:找了好久的规律,如果是0是偶数就可以走过去再拐回来关了,如果是1走过去就好了,现在就考虑奇数个0时走过了再拐回来关时会有01的向右传递,所以说只要0的奇数段为偶数就好了;
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<vector>
#include<map>
#include<algorithm>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define PI(x) printf("%d",x)
#define SI(x) scanf("%d",&x)
#define T_T while(T--)
const int MAXN=1000010;
int a[MAXN];
int main(){
int T,N;
SI(T);
T_T{
SI(N);
int temp=0,ans=0;
for(int i=0;i<N;i++){
SI(a[i]);
}
for(int i=0;i<N;i++){
if(a[i]){
if(temp&1)ans++;
temp=0;
}
else temp++;
}
if(temp&1)ans++;
//printf("%d\n",ans);
if(ans%2==0)puts("YES");
else puts("NO");
}
return 0;
}

  

N bulbs(规律)的更多相关文章

  1. HDU 5601 N*M bulbs 找规律

    N*M bulbs 题目连接: http://codeforces.com/contest/510/problem/C Description NM个灯泡排成一片,也就是排成一个NM的矩形,有些开着, ...

  2. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

  3. Codeforces Round #384 (Div. 2) B. Chloe and the sequence(规律题)

    传送门 Description Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems ...

  4. ACM/ICPC 之 DP解有规律的最短路问题(POJ3377)

    //POJ3377 //DP解法-解有规律的最短路问题 //Time:1157Ms Memory:12440K #include<iostream> #include<cstring ...

  5. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  6. 在sqlserver中做fibonacci(斐波那契)规律运算

    --利用sqlserver来运算斐波那契规律 --利用事物与存储过程 declare @number intdeclare @A intdeclare @B intdeclare @C int set ...

  7. 谈谈黑客攻防技术的成长规律(aullik5)

    黑莓末路 昨晚听FM里谈到了RIM这家公司,有分析师认为它需要很悲催的裁员90%,才能保证活下去.这是一个意料之中,但又有点兔死狐悲的消息.可能在不久的将来,RIM这家公司就会走到尽头,或被收购,或申 ...

  8. Math.abs(~2018),掌握规律即可!

    Math.abs(~2018) 某前端群的入门问题长姿势了,一个简单的入门问题却引发了我的思考,深深的体会到自己在学习前端技术的同时忽略遗忘了一些计算机的基础知识. 对于 JS Math对象没什么可说 ...

  9. COM中需要调用AddRef和Release的10条规律

    COM中需要调用AddRef和Release的10条规律  

随机推荐

  1. day3_python学习笔记_chapter5_数字

    1. 整形的表示范围-2^32~2^32 - 1 : 长整形表示:aLong = 99999L 2. 复数的属性, num.real,该复数的实部, num.imag,该复数的虚部.num.conju ...

  2. 【转】CentOS图形界面的开启与关闭

    源自:http://blog.sina.com.cn/s/blog_4a1f76860100zpus.html 安装CentOS 5.6系统的时候我没有先装任何组件,现在用X Window,需要再安装 ...

  3. mssql索引使用情况查询

    可通过查询dm_db_index_usage_stats表取得对应表索引被使用次数. 列名 数据类型 说明 database_id smallint 在其中定义表或视图的数据库的 ID. object ...

  4. 服务启动项 Start类型详解

    注册表的服务启动项 Start类型详解 HKLM\SYSTEM\CurrentControlSet\services\ 下的服务项.不论有没有在services.msc服务管理控制台中显示,在注册表中 ...

  5. The Building Blocks-Components of EA part 1- Information and Strategy

    1. Zachman Framework Presented as matrix of Rows and Columns representing domain of interest and lev ...

  6. The Linux device model

    /sys和 /dev的疑问 1./dev 下放的是设备文件,是由应用层mknod创建的文件.假设底层驱动对mknod的设备号有相应的驱动,如open等函数.那么应用层open "/dev/* ...

  7. 第八章 C#面向对象编程(Object-Oriented Programming,OOP)简介

    .NET OOP 一.面向对象编程的含义 1.函数(过程化)编程常常导致单一的应用程序,即所有的功能都包含在几个代码模块中(常常是一个代码模块) 而使用OOP技术,常常使用许多代码模块,每个模块提供特 ...

  8. Android的selector 背景选择器

    关于listview和button都要改变android原来控件的背景,在网上查找了一些资料不是很全,所以现在总结一下android的selector的用法.首先android的selector是在d ...

  9. MySQL 开放局域网

    局域网连接mysql报错: ERROR 1130: Host '192.168.0.220' is not allowed to connect to this MySQL server 解决方法: ...

  10. 线段树讲解(数据结构、C++)

    声明    : 仅一张图片转载于http://www.cnblogs.com/shuaiwhu/archive/2012/04/22/2464583.html,自己画太麻烦了...那个博客的讲解也很好 ...