1978: [BeiJing2010]取数游戏 game

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 650  Solved: 400
[Submit][Status]

Description

小 C 刚学了辗转相除法,正不亦乐乎,这小 P 又出来捣乱,给小 C 留了个
难题。
给 N 个数,用 a1,a2…an来表示。现在小 P 让小 C 依次取数,第一个数可以
随意取。假使目前取得 aj,下一个数取ak(k>j),则ak必须满足gcd(aj,ak)≥L。
到底要取多少个数呢?自然是越多越好!
不用多说,这不仅是给小 C 的难题,也是给你的难题。

Input

第一行包含两个数N 和 L。
接下来一行,有 N 个数用空格隔开,依次是 a1,a2…an。

Output

仅包含一行一个数,表示按上述取法,最多可以取的数的个数。

Sample Input

5 6
7 16 9 24 6

Sample Output

3

HINT

选取 3个数16、24、6。gcd(16,24)=8,gcd(24,6)=6。

2≤L≤ai≤1 000 000;
30% 的数据N≤1000;
100% 的数据 N≤50 000

Source

题解:

这种DP根本想不到啊。。。是数论的一般方法还没掌握吗。。。

类似最长上升子序列的做法,只不过有个要求就是gcd必须要>=l,这样根号n枚举因数,然后dp

dp[i]表示以i作为最大公因数可以选的数的最多个数

满足gcd>=l才更新dp

还是不理解?为什么可以把最大值加到每一个因数上啊?

唉?好像忽然明白了?

i代表若 x 与最后一个选的数gcd==i,此前最多可选多少数,只要要求最后一个选取的数有i因子即可,所以 x 可以更新到 所有 x 的因子。

终于想通了,好开心!

代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 500+100

 #define maxm 1000000+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
int n,m,ans,dp[maxm]; int main() { freopen("input2.txt","r",stdin); freopen("output3.txt","w",stdout); n=read();m=read();
for1(i,n)
{
int x=read(),y=;
for1(j,int(sqrt(x)))
if(x%j==)
{
y=max(y,dp[j]);
y=max(y,dp[x/j]);
}
y++;
for1(j,int(sqrt(x)))
if(x%j==)
{
if(j>=m)dp[j]=y;
if(x/j>=m)dp[x/j]=y;
}
}
for2(i,m,maxm-)ans=max(ans,dp[i]);
printf("%d\n",ans); return ; }

BZOJ1978: [BeiJing2010]取数游戏 game的更多相关文章

  1. [bzoj1978][BeiJing2010]取数游戏 game_动态规划_质因数分解

    取数游戏 game bzoj-1978 BeiJing-2010 题目大意:给定一个$n$个数的$a$序列,要求取出$k$个数.假设目前取出的数是$a_j$,那么下次取出的$a_k$必须保证:$j&l ...

  2. BZOJ 1978: [BeiJing2010]取数游戏 game( dp )

    dp(x)表示前x个的最大值,  Max(x)表示含有因数x的dp最大值. 然后对第x个数a[x], 分解质因数然后dp(x) = max{Max(t)} + 1, t是x的因数且t>=L -- ...

  3. P4411&&BZOJ1978 [BJWC2010]取数游戏(动态规划dp)

    P4411 一道dp f[i]表示一定选第i个数的条件下前i个数所能得到的最优值 last[i]表示质因数i在数列a中最后出现时的下标 状态转移方程为\(f[i]=max\{f[last[j]\:|\ ...

  4. NOIP2007 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  5. 1166 矩阵取数游戏[区间dp+高精度]

    1166 矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description [ ...

  6. 矩阵取数游戏 NOIP 2007

    2016-05-31 17:26:45 题目链接: NOIP 2007 矩阵取数游戏(Codevs) 题目大意: 给定一个矩阵,每次在每一行的行首或者行尾取一个数乘上2^次数,求取完最多获得的分数 解 ...

  7. 洛谷 P1005 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  8. COJ 0501 取数游戏(TPM)

    取数游戏(TPM) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取 ...

  9. codevs1166 矩阵取数游戏

    题目描述 Description [问题描述] 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m 的矩阵,矩阵中的每个元素aij均 为非负整数.游戏规则如下: 1. 每次取数时须从每行各取走一个 ...

随机推荐

  1. 【转】 基于TFTP协议的远程升级设计

    版权声明:本文为博主原创文章,未经博主允许不得转载.联系邮箱:zhzhchang@126.com 说明:由于CSDN博客编辑器对word格式近乎不支持,因此对表格使用了图片方式(最后一个表格未使用图片 ...

  2. PHP发送POST请求的三种方式

    class Request{ public static function post($url, $post_data = '', $timeout = 5){//curl $ch = curl_in ...

  3. Android Fragment详解(一):概述

    Fragment是activity的界面中的一部分或一种行为.你可以把多个Fragment们组合到一个activity中来创建一个多面界面并且你可以在多个activity中重用一个Fragment.你 ...

  4. 2014ACMICPC亚洲区域赛牡丹江现场赛之旅

    下午就要坐卧铺赶回北京了.闲来无事.写个总结,给以后的自己看. 因为孔神要保研面试,所以仅仅有我们队里三个人上路. 我们是周五坐的十二点出发的卧铺,一路上不算无聊.恰巧邻床是北航的神犇.于是下午和北航 ...

  5. iscc2016 mobile1-TurtleShell.apk解题过程

    拿到程序先运行,简单的验证输入的flag正确与否.jeb加载apk文件 实在库文件里面验证,所以ida加载之,so文件是加密的,所以看不到关键验证函数,百度搜了下libhackme.so,出来这篇文章 ...

  6. linux伪文件与proc文件

    linux/unix系统的文件类型大致可分为三类:普通文件.目录文件和伪文件.常见的伪文件分别是特殊文件.命名管道及proc文件. 伪文件不是用来存储数据的,因此这些文件不占用磁盘空间,尽管这些文件确 ...

  7. 【socket.io研究】1.官网的一些相关说明,概述

    socket.io是什么? 官网的解释是一个实时的,基于事件的通讯框架,可以再各个平台上运行,关注于效率和速度. 在javascript,ios,android,java中都实现了,可以很好的实现实时 ...

  8. 如何让MyEclispe中英文切换

    我们通过网上的一些汉化办法汉化了我们的MyEclipse,可是我们有时候想切回英文版怎么办? 方法一:我们可以通过修改MyEclipse配置文件的办法来从中文恢复到英文, -Duser.languag ...

  9. DOM 添加 / 更新 / 删除 XML (CURD)

    获得Document /**     * 获取文档     * 1.获得实例工厂     * 2.获得解析器     * 3.获得document     */ 添加结点 /**     * 1.获得 ...

  10. C++基于模板顺序表的实现(带排序)

    说明:代码是可以运行的,但是发表在博客上后复制到编译器里面报N多错误,找了半天原因是网页里面生成了一些空白字符,这些字符编译器无法识别. 因此使用了2种插入格式插入代码. 第二个带注释解释的代码不可复 ...