最大公约数(gcd):Euclid算法证明
1个常识:
如果 a≥b 并且 b≤a,那么 a=b.
2个前提:
1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N.
2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x).
1个引理:
假设 k|a, k|b,则对任意的 x,y ∈
Z, k|(xa+yb)均成立.
证明:
k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z)
于是有 xa+yb=xpk+yqk=(xp+yq)k
因为 k|(xp+yq)k, 所以 k|(xa+yb)
gcd的Euclid算法证明:
命题:对任意 m, n ∈ N,证明gcd(m,n) = gcd(n, m mod n)
证明:
令 k=gcd(m,n),则 k|m 并且 k|n;
令 j=gcd(n, m mod n), 则j|n 并且 j|(m mod n);
对于m, 可以用n 表示为 m=pn+(m mod n);
由引理可知 j|m(其中 x=p,y=1), 又 j|n,于是 j 是 m 和 n 的公约数(但不一定是最大的);
因为 k 是 m 和 n 的最大公约数,所以必有 k≥j;
通过另一种表示形式:(m mod n)=m-pn,同理可得:
k|(m mod n),又k|n,于是 k 是 (m mod n) 和 n 的公约数(也不一定是最大的);
同样由 j 是 n 和 (m mod n) 的最大公约数可以得到
j≥k;
由常识,得出结论 k=j,
即gcd(m,n) = gcd(n, m mod n) ,得证。
源 http://www.cnblogs.com/ider/archive/2010/11/16/gcd_euclid.html
最大公约数(gcd):Euclid算法证明的更多相关文章
- 求两个数的最大公约数(Euclid算法)
求两个数 p 和 q 的最大公约数(greatest common divisor,gcd),利用性质 如果 p > q, p 和 q 的最大公约数 = q 和 (p % q)的最大公约数. 证 ...
- 最大公约数与欧几里得(Euclid)算法
---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非 ...
- 使用Euclid算法求最大公约数
参考文章 1.<linux c编程一站式学习>的习题5.3.1 2.百度百科Euclid算法:https://baike.baidu.com/item/Euclid%E7%AE%97%E6 ...
- Gcd&Exgcd算法学习小记
Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...
- EM算法(4):EM算法证明
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(4):EM算法证明 1. 概述 上一篇博客我们已经讲过 ...
- 1011 最大公约数GCD
1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B < ...
- 51Nod--1011最大公约数GCD
1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用 ...
- 最大公约数(GCD)与最小公倍数(LCM)的计算
给出两个数a.b,求最大公约数(GCD)与最小公倍数(LCM) 一.最大公约数(GCD) 最大公约数的递归: * 1.若a可以整除b,则最大公约数是b * 2.如果1不成立,最大公约数便是b ...
- Educational Codeforces Round 39 Editorial B(Euclid算法,连续-=与%=的效率)
You have two variables a and b. Consider the following sequence of actions performed with these vari ...
随机推荐
- iOS学习之导航条NavigationControl的一些属性设置
/** * 配置公共的属性,该属性作用于所有的导航条界面; */ - (void)configureConmmonPropety { //1.设置导航条的颜色 self.navigationContr ...
- SPI协议总结
四种工作模式: Mode 0 CPOL=0, CPHA=0 Mode 1 CPOL=0, CPHA=1Mode 2 CPOL=1, CPHA=0 Mode 3 CPOL=1, CPHA=1 常使用Mo ...
- Android学习笔记--AlertDialog应用
1. 自定义实现带图标的TextView IconTextView.java package com.evor.andtest; import android.content.Context; imp ...
- CCI_chapter 3 Stacks and Queues
3.1Describe how you could use a single array to implement three stacks for stack 1, we will use [0, ...
- JavaScript中String对象处理HTML标记中文本的方法
big():创建一个<big></big>标记,将这个字符串的字体变大blink():创建一个<blink></blink>标记,使字符串具有闪烁效果b ...
- Unit Test相关问题汇总
1.测试私有方法(1)使用反射 public class Calcutate { public int test() { return add(2, 3); } private int add(int ...
- linux 版本家族
1. 简单的说,在桌面系统上,可分为Debian和RedHat两大分支,然后Debian这一分支到现在比较火的是Ubuntu, RedHat比较火的是Fedora.贴一下它们的版本历史: fedor ...
- 【hihoCoder第十七周】最近公共祖先·三
之前就写的是离线算法.思路就是先序一遍树,记录层数,然后高效RMQ就好.ST和线段树都能过. 以后有时间将之前的在线算法补上. #include <bits/stdc++.h> using ...
- poj1011 Sticks(dfs+剪枝)
Sticks Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 110416 Accepted: 25331 Descrip ...
- AndroidStudio常见提示
Required:请求的是String字符串 . Found: et.getText()返回的是text.Editable