题目

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkEAAAAtCAYAAACprb+lAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA54SURBVHhe7Z2Ljtw6DkST/fEgX757C0gBhVqSomy5u3ObBxAk8VGk1OOBkcwkP//7Dz+GYRiGYRi+jP/8mYdhGIZhGL6KeQkahmEYhuErmZegYRiGYRi+knkJGoZhGIbhK/nIH4z++fPnj3e0tVM3iu3kZzGnz3ylv10/9rtE+qu6EVlOV+tKTXKy312gQ7p6p2p32KnlsatcPfuKu+ft1NqtoZp3+6tY3aOSxXY1dmplUKPqZcWVM7i/U8ep9K+y6lvJYnc0Po3V51Cd68p9zEuQsKpbfTjI63wAnfUJIr1OjSxmp7/d2ArVUd3OWnE795gjIg0lqxOxEwuynkCnL6Bxu/XvcPdeqnz1eVzlu8JKI/PDnnG3py47vXfWK3ZiI1Z1V/qVP/OtNJWd2BPsnLezvgo0drlbsyI7U+cOslzw9pcgNLfLEy3zkqrLUqK46CyMcX3Pj/SuojVWdOOcrNedc7BuFJ/p0O4zOZ0H4OtCjZ0c0O0lQmt5nvexo7sL++72H8VVuerzuMp3BWisiGqcqH0H1l/14XEeH+XDtkvVA4lqKZ263vsuWf1Vb6dhvc6daJzHr/I77GqcqAkiHbVVfp9JlEPaL0EQIc2US1TNPsXWhck9EMRWGlEOyWKy+h28F5LZ71CdzdHa2ov3VfWfoVqK1/BZfRkrf8ROjsdeqQdWOld1O+zWUj/WGa7Z5e45d/pXVnlP4rWrHjMY7zGds2b1QFUzoqsLVv4ddvo8VZP4ObJzVT0y3mPu9pr1chKtsbPGnKGxCu2g9RKkhYHvT1EdBjxVM9Jd2XUGbstyifo1PsvtwhrsY4XWjfBevD/d7/gc+EkVB7LYqh730RyR5VZEOR08dlVHyWpy7fMTZNpVzVP9PHUu6K7IztzlZN/ZPVT3o71qjOZE+bS5L7ODyEYqH4B/RVQvYtWX7nd8d8n0qjrwkaf71FoRp2pE5/CZRHuSxXkO+JjfDuMB0GA0nmB1ibpXaNeeObsmUXulfYeoNvYc0V5Rn/qf6JVAm31z0BbBWMDYu2htakd4HAd9GTyPjwqvkQ2gelzTh1n3p3Ft9gFY24lsTpbno7LfAb2vRkYUG41T4Lyqp+eHPboPzclirnJHL8qD3mpEZDEnz3oC/SyA9gd71K/mZDGnQZ1sPIHrVnXu3EfrJYjiENZipzihyd58HUH/qiYvU7U8R/fU1HgQ1VLtKOcKXuMd8EzVeTQGPUd3wzvhAIxXNI7rK+zkaSzrrkCMjpOoputrf6szwu8jg36tFQG/akU59K1Ano/KfgX2ujNOsqNP/+q88KtWlKMxXEdEuRGRBvU5Vnh8Z5xmV1vjV3n0r+5TPxsQ5WhMdPd3iOpVsI+dEeH2Ku7OfVz6weio6FVUq2oUrGoyX/V2+uzEMyabCfbAbbpXMp0rqNYK1spivSfv76rvDpUWfVkvq1ljie8BbMDtpNIDlZ97zBWRJtDcrEaG1ta5y24dX5NMB/YVO/1GeO2slwjGrvqs9FRD5y7d+Couqn2nD8/NfFUc8H0G4iKQ262341Po87lLN36nhztAo8OJOtTYXQPfK/RFMW//6zBvCPtodNmJ3SW6QO4jO23Iw9A190+ivflabaTyPYHeRTYUtWUxT6H1tGZmP4V/JhwOa8OHtcbRxx65/xTYcxeeLRqniO5Kbe6LiPrDeDfae/csgL1rTjbA7lmRF+W4LlCb+wjvm+Pfgp63Ov8p/B6jcRKcJdOE3c+q5+faYypaL0ErwZ2CfzP8AHherrNB9AtF1zu4Zhf2/CrYZ7cm7yMajtqzmKdgPR1ur9B76d7NVbQX1PIeV72+G/Z8mp279zsjmf1vQvu/chbP1UH7SVyfZPaT8Gum+3XzCvTMV8//aWdSVudxv96Brrsc+ZMgFD11ofxwfHwKvGQdlZ2szoB4xHjeCbravGuOK6AGxxOs+uqe9TRVTd6Hj4grvUc5sNGOmbZd7U+HZzsN70/1V3cZ2T4VPVcEz5qdR++CXD2/14p0OYjWxxzV1TzG7gJdjk9idR7ez52+9e6q8RQ7+qu46j7aPxjNhjIhsGqkA7SjsYK1s/k0rou9DofnoL9zJmU3XmG9qC+FPXIQXb8b9nb1Hh1qcaaNdGvc7eMOUW3YaMfcOQfP72T2k6x6O8FODcRqvH5tdL8mrvCqz4Dng+7V82h+VyOK5R5zBHweD5ijPoV5HCSLP0F2hsx+FZ4JutUdZHTiWWM1nmKnBuOu3Ef7T4JYJBPfKfoE3p/vn0brZTX5IMDPNeEH53ay+8ESzaN+VuMqqsm17zM03kcGfVfu0e+Q8aDKewXaC4EtGl0Y77oRiNG74NzJPUW31yt0tHm3fm+caWMc0VhCDR8V0PCaajsJe4G294V9ZCewM4aDtgrGEmoAahCuqatxgDbNOQHr6dr3GejH+1TbSdgHtL0n7CM7of/TQF/d4dC2ex8f9X+HsVFFm3661ai+El3gCugxLzob/epb7Vdkugp8gH6NpQ9UNlDVUKK4Va772UOmE8VHdpBpgSoPMBdEfpDlKiudSiPyqY3aqx5OU/WsMI59VnTjHO2j21eE9uqaINKt6t3ppcNKP+ubeZ6vdtLRB5Ee2bUD+jwGe0Cb+ukDlQ24bkY37gorbfbuMczz/NX+Dlkvr0DPC7wH9avv//b/bF7f/TAMwzAMw5t5+6/ID8MwDMMwvIN5CRqGYRiG4SuZl6BhGIZhGL6SeQkahmEYhuErmZegYRiGYRi+knkJGoZhGIbhK5mXoGEYhmEYvpJ5CRqGYRiG4Sv5yJcg/guQT5PV2al/p9dubhR3p26XqzV28hBbjYrMv8pTOrFVTLfWTk+nuXsfnfwsppvbiQNVXFeDdHu7Q5R/RxO5HBGn6+2yU2vnDMPwFB/5EsR/6noX5GSD6PpqnVeC/lb/qLef8d3s3Ctio0Gfk+m+4/yoiR47tbtx7wB9cUT7jMy/ygNaQz/zq1Anq53ZHY9zTayr4THRfoXG++Bd3b2vd4EzRGT2YXiat/+3GVe++NGy59EWHUftUYzbMp2IVSz8TtWLUvWlupVGl6jPFVEvK7xXPyPwc2Z+n0mUA2DvwnzPUXunptKJOQ1rdmtHcbA5jHF9z4/0lCg+gtoK8zo1T9myNdjRc1Y6HbK8Vb1TsP6qf4/z+FX+MJzkI16CdlqoHpjdNXFbFJPRjY1qRDAm8wPERHqdPrrc1Vvlq39njTlDY5VIj3Rsqz3J7Eon5hTdvgF8DmIrjSiHZDFev9InXnMVD3Z1SaZH1F/VwNqBr8ohkW1Ftx64or/CNbMaUZ+E8R5zutdhUN7+12H+Be4PwCseiHc8ZKyJmUNRu45XEH0Dq7553QW1os89Om90D2pjHvceu4v3wT1mH7R/AuxHWfXHeM5+JtfEWvdAbYznXu0cul+BGGoA7pmvg/Y7qJ5DW+YH0bm1L+4jqLsaCrQ4APyZ/kmiOth7f0D7I2qjFvcee4rfv3//WQ3fzsf9TBC+6KOH55NBvz6eQr85vKLeq/BvdtU3P5zX7+FpWEPr+qA9g30/3a/eD9B6VX3aOeuZXJOovdJWEMeh+y5Rfz5oV5CnI7MR1XK0RhajNYDmwJblAequRsXKfwI/h94h7LonmpPFDMOr+JiXIH94ViCeOe9+iNCvjxPwjDqUp2q+A6+b9QG7nxV72OnLcq9CPZ11KL6/i9aI6in0r74W9L5IdKeEmhoPolqqHeUolS+DOTrrUHSPXnxU9gqtxbXWAq6je8Ri7zlP0a2j59B1BP2r++I5qRXlaMxT9zJ/8jNkfMxL0O4XP+L5MHH+N8Jz+hn9rk584+A3IYI9R7RX1Ed/ZIuAz8+HfZTDOM/B2jVOoLpVvep8QPvFvIonzGF+lUt/B4/N+ovs9NGuMQBr3a+g3grVrep19a7Cej4UvRPM7CmyZ/3Slw0n82n9CvaFWKyrPPo7aCxn1iAac5p5ARoq3v6D0RX+oERozJ01iWwV3fhOrWjv0K+xkfYuK73dGqt4+j0u2+scUeWQLDdC84BquY7W8prE7VlcxJ1csIpX/25fEVGvruv2LA5kuVwrkZbnk65d96qp0KYz0HWXSMdx387+ju6KVTz8EVHNTIsanb6yF6Bfv379WQ3fzl/7K/IkelCqh6jygZXf2YkjjPfcnX2k5zAm82d4XRDZKlbxmb9r133mq3LIjg24Ltc+K5ENZHbH47p5pBOPmC6upfpZr7t2JYoBns91Njtdu+oA11S/2rowh0R6jvtWe+WO7opuvMZlNSOtKi+DL0Lz4jNEfMRvh0WDPs7uU/Aw7JA9PGrHvKsbAQ3qctDOdQXzMRzV+9vJzhixisOdIMbvpntXGqd9ZfZ/Azibj8pOVneAeMRonu8d3i0H0b3radwTQL/q2UGsj8pOduv8jaw+K5z/5D3My89Q8ZF/HeYPQPRA8EGK7LRF60gLRPYsVunERHTqVftVLMnsFVHOrs4q/oQebCDS6epfiYvWPhPfOx0/oT6p8pRVDUVjtRbJdBgb+av67otiq5honc1O16571VRocz3PdVbx7ifuW+2VzAc7gd/3Haq6DvWzXjKdKm8Ydvmol6CrDwXxGN1n+VVNsKq78kdUvai92q9iQWTrgLwOlfaqdreG4ucFsHkt7lc9gE4M0LhsDSpfRjfuKjv6V/sHiPUc7jOtbg1Fc7I14B7zLllPXkOJfGqrcoH7sa9YxWa1Vn3coavNfhHrOdw/2ecwkI94CdIHoqJ6KDIftYH6d2uqTpesH7dnvWhsFOM9uc/1uuzkeg8drvTFnljPNdSvPt87Kz/ROK0FdA247+iS3fgdVtraexc9s2uznteN+ohsKzRHawFdg11tkPVU2YnX77JTD7hvtQfsK9M8QdUzyHpgnuev9IbhLh/922HDMAzDMAxP8XH/YvQwDMMwDMMrmJegYRiGYRi+kB8//gcBewgTpnH/0wAAAABJRU5ErkJggg==" alt="" />

解决代码及点评


/*
功能:有n个整数,使前面各数顺序向后移m个位置,最后m个数变成最前面m个数,
写一函数实现以上功能,在主函数中输入n个整数和输出调整后的n个数。 */ #include<stdio.h>
#include<stdlib.h> void moveA(int *,int,int); //按题意设计函数 void main(){
int a[15];
for (int i = 0; i < 15; i++)scanf_s("%d",a+i); //输入数组 int m; //m为移动的数
scanf_s("%d",&m); moveA(a,m,15);
for (int i = 0; i < 15; i++)printf("%3d", a[i]); //输出
system("pause");
} void moveA(int *pa, int m,int n){ //m为移动的数,n为数组的大小
int a[20] = {0}; //a用来储存pa后5个元素 for (int i = 0,*p=pa+n-1; i < m; p--,i++) //将pa的后5个元素存入a中
a[i] = *p; for (int *p = pa + n - 1; p >= pa + m; p--) //将n-m个元素一起向后移动m个位置
*p = *(p - m);
for (int i = 0, *p = a + m - 1; i < m; p--, i++)pa[i] =*p ;//将a中的m个元素存入pa的前m中 完成转换
}

代码编译以及运行

由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:

1)新建工程

2)选择工程

3)创建完工程如下图:

4)增加文件,右键点击项目

5)在弹出菜单里做以下选择

6)添加文件

7)拷贝代码与运行

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACqmSURBVHhe7d0NnGRlfSf6f/XMtAMIwhiGASZ7N9nEl8jwDgIGREAGpVHRxEg0AcWPu96s66IGI9lk3Q8RxfgCm+zOZq8ks0QX3c3iTWLEyNuQBJOOCMiLYZPr3fUaYJhmeBuBbpih7nlOndNzqqaquqq7us/AfL/jn3POc96ec2p6+uc5Vacan7jy6mZU/M0N/70YAwCAxXHCGT9fjLU0tm/fnofSc889NxqNRrzutNPj5FPXx+rVB+ULAADAqMxM/yjuvfv2+P2rropmsxlf/epX8/Y8lKZAesABq+JXPnhxPBXj+QwAAFgsB+83Hpdd+pvx6KOP5ME0D6Vvfetb49f/7SfjqcaLisUAAGBxHbzvirj4wx+Ia6+9NhrnnHNO88QTT46TznprMRsAAJbG5r+/I770patbofTfXvrb8WRzRTELAACWxit+fHW8992/2AqlX/iD/xr3/eNUMQsAAJbGK9YemIfSsWI6GkoppZRSSi1xlWavlP79/Q8XTQAAsDReduiPtd++/4cHthazAABgafz0IS9tD6X/z4OPFLMAAF4Yntz2ZPz9//xf8eij24qWxXfAAfvGy17+E7HPvvvk0/rQ6kMvP3XwquFC6Q1/fE0xNpyffPm6+Kcv+5kYG5t9+yoAwJL41l/eHkce/s9i9UEvLVoW35aHtsadd30/Tjr56HxaH1p96GWXUPr9zY8Ws7prPPlQMdbdWKMRjbFGNJuRf2VUquSb198YP7v+LbHXXnvn0wAAS+XGb34rJs7+2XjkiaeKlsW3ar+942t/9ldx+pkn5dP60OpDL/9szQEdn75PobJPHXHkkX1r3RFHxGHrDo91hx8eh2fjZXsuC6jdtrnb1cM3xn+45DPxFw93mbfYVd337tKPbvNrq6n4i9/5UPzR97rNU0oppXpXfuFsCavb/nbXPpQfgd85Xczr9ieflxavDot1yj/FdKpBj7k0e6X0f215vGjq7tiXrYlNt9wbv3fL38fY8udibEUzxsZ3xLKsLn/bGbFq1QHFki2nf+grcePnfiE+9Zkr4+T1b4m993lxMae0JW658rL45oPFZO6YeOenfil+ppja6e747792Xaz+8MXx2gOLptyu2zjyl6+In991A4OZuj5+57N3xOG77GeUehxLdd+xFP3oYZdzkPp7VdyZzzwkzizaH9706fj8Nx7IW6vWnHV2rPnGHQO9Vr1f725a6295/QJe3656/d1Khj32S+IDp67Oxrqv11KdN8zxAzAfN/z5rXHOOacs+RXCP/3Tv4gz1r8mnx60D9/atClu/5vJYqq3o094dZx06qnFVHc9+/D4k9lUupu9Mwy2NLM/jfjrW1If/rZoS/s6Pk465dT41i23xO2TO/uW9+G1r83vkLdyZesOebOZgmZrctX++7T1oZefWP2S9tv3/3vqiWJWd8f+9EFxcxZK/+S+H8ayFEhX7MjquWx8R3zw5Nf0DaWnnHVu91B6xSfioddfGW9/VdF079VxydXfyYJlpa0wdfPl8eV4d3zgdemXfilt4w8i3vnR1i/9FKg+c3sc/pFiesl1OaYuuh/L7qh1PHcd8eutvuavT8S7Lv/lXYNUfu4fjNOzeQf2fK0Gf713Ndi5nY/ef7eGP/af6btemveNOPBft7bxva98ML4Y743LfmFdazsAjFwKY2+aODke/dF00bL4DnjxyviTr/1lWyAcpA9XXvbJ+Mp//Y/FVG+/8Iv/Z3zwko8VU9316sPWtmBcpMd8rJHH0t/51OXxR1/5vbwt+blf+OdxTBZAv5OF5c72D/zaR4up7l6aBeNqH3r5pwfu1377Pl1i7VdPTj+TL3fA/ivi/31kc/zd1P8X9z38g/ifW/933p6kwyrfS3rgup3fENVte2PZecgG+WXb2bbDzo9PfWQiHrr6D+Pvqu1ZHXTY0RF3fTe2trUX28j+5NOrz4wzjn4g7rp3S2WZpawux9Sluh/LblhT3427Hjw2zjjtoNb0YWfFWYd8J+79XsdyWW299/Z48Oij4rBsvO9rVW3r83rvWoOd2/lU1/7O89j7r3dQvO6i81vLZXXYumMjNm/e/f8eKKXU87hy2TCNLVkV+23rQyb1ot+fYVTX6/6npdqH9NmfxthY3r/WMPU1DVttY9nwmBNPyAPnc889l9d/u2ZDHkjTsGzLg2q2XL69bJ20XvpAe6ta+8u3mX55Z8o+9KrSzveU5h3tU8Vykz/4h9i+4qlYsdf2WLHy2VieVZIu+aZlyhdizf/xw3yYdN1eueds+bb2NUfEEYfcFvek9w4+fH1cefHlsSm9vzG1x9fiptTeto1sf9X1i6bG2EOx6Yp/FV/53t3xlYv/VfzaFdfHw/kyxfRsXR3fK9fN91eZ7lj2yk0PFe3d5l2fTX8i0l3dO/5L1lbs7+FNl88uM7uvbsdS3XdbP9J+snOw6erKvnr1o1hu9lh77D9Vvo+yPZ2nanvZj82tsFWuM7YmVq/JctRUdf+p7o6brmvEWWcc0Zru+Vql16ballX19c7bep3zcv32+V373W2633nq+nrM89gHXq8R37v7tjj4yCNidUd7q7qfh9brufO4vvflbP6X7+67jlJK7cmV/+rIL5ul8aWpZhqksWof0nj6HdinqtLV0M6q6rZ+tbL/tJar9CFZlrXn4bEYLsvmpcpDajY8+bTT4tiTToy3n/f+2LFjR17XfPF3Z8dTe5qflhtrLMtDaFqvDJitMNoKp6WyD72qtDOU5hvqXdl/8uVmw+iLns2Gz8SKF7WuoFa2mbvitMuLsV7bzjrdmtm3vTWaxg+O09YfF3fcdVcxvXPZ2emp6+P62w+NI9cdPDvvjo13xuGf/d349IfXx+rGXfHlj/xfsfmNvxGfTm2p3t2Iqz+S/ZIvtpFtrdheWvbrseajxXKf/Y048s5PxJfvLee1b+ei09fHedkybzgk4qh3Z21pf1l/vvT1Q+L8cl+fvSC/Stb9WKr7ro5no3F/fGPzUa1tfPRNEV/fGJum0rxWPyLtL9/+e6Jx52071+25/y2x6YZGvKtsf3fWl427noOHt7TeANrqR1F5S3Zuq2333hl3HHJMrDuobOv9WmUjlbbO9n7nvOP17NPvsnZOz3GeuvR3vsc+53rZa3LFRz4QH83q7iPS35v0d7WybF69z8Pq0z8W5x99W1x/05Zs31fH1ZvfFL/6ziwQ9z13Sim151b2nyz4ZOFpWf+6ddOmuOKyy+astFy39dsq+52V77fah/R7LA9+vSvZunVrXsmHfuM3Ziupzuu2fmd17UM2LK9q5qGwXCZbvAyrp5x2ehyXBc/z3vUv49FHH52tNJ3aTz49C6RFoNy5rZ0129ZxHnpVqXUGMt0WqlYpXRldUQbS8WdifHwmb28+91w+7KrL9sptdm8/NNasycYPWh8f+twlcVoZdtYdFUfffmfc27bs/XHd5f8yLv5wVpd/J4782M7lk6PfUwaxrPIA8ab4pTPWzK7fWPeGLEh+O+5Ov7zLs1EuW932hy+N6x6I2LwlhYEu2ymqtXoxfdCaODi+Hf/lw5+Mmzs/zd55LNV9V8dTZefjDeuPbI0fdGQcmQXf9P8Cyn68fl2xXGNNnHbWccWqadle+8+We9f6aNz0ydax/cG383WyGW37Xr0m29HsOq3KE1Zb25a4+c+/HUeflUJ/pb3ra5VWrSwz21683v3Oeb5cx+vZ67VL1fla9jtPqTr6O99jn3O9/O/0f4jfzurwu7Jj/Ow34+HKsnnNcR4Oe9f74uCvX5q9bg/EG84v9j3HOkoptadW69/6fNDXt7/1rfw9k3NVWm5Oxf6qfUhtaaxfJTMzM3kln7v00tlKqvO6rV+tUlsfMq3QmNpSAF2WT+dt6apnWnbZWPzVzTdlx/nX8fnP/JvZfaZK06n91ptuzraRLZ9CabZOvl4ZUvPxFEgr+0xtfapU/uruulC1SnkYzQPpTH6VdPl46/b9XffcG3fdfU9e6W2l01nnn3766Xxet+21Kp/Z3nbvdXFd49hYt7qjPa8j44hjvt26SjTbdmi88WP/MT7z+VS/Hqe3rde5/dZ0e1uqLBSlIJv/SXkvtWUjh745Ls63u7M+nAfRXtsp1psdPzJ+MV/vvdG4+lfiVz90WdycX+FszWs7luq+q+NZJXlbMZ2aWtNpRppon7ezrcf+p74Zn//Qr8QXG+9tHdfH3hytnJvNy/9UzsHmh2IqH0+1JaY2Rxy8phLGp74b333guDhiNvCV1e21avWtbbm21zub3/OcF/PL9WaraGvrd+d0a5l8udnqbOvsbzZ/Xsc+wHpFrXvXP4+jH/hO3DP7d6KsbBt9z0NaoCWbGngdpZTaIyv75zH/tEsa6VeZ73//+3NWrtv6lZodrfQhVTbRvzLPPPNMXpdfdvEuVc7LdVu/rfL/ZaOtPpTSFcwsNbYCZV7FVc0iVP7lDTfF3976rbb9XfSR35odT+1p/l/ceGP2O7YVaFuhtqh8vLXd0ux56FGlgUNp2sEDD3w/3vdPJuI9B78lzj/w5+Od+58X73jxLxVb2Kn1voP0ZtjWh566bS+vNC/9Kafv2RgfueqBOPv8s+KgND315/G5iz5RCXKNOGz9myPuuHPnL/1htr/u6Djm/j+OL95YCUr3XBdfjywU5VdX896mDc4ue+M9xXJZ3fvFja0rabvM+27cXG6zus+s/zfny6yJ03/143H2offHQ1uKeVm1H0tl3x3jabJcJ69yepd+bImbv9G66plP99r/lgfjgSzAlFd6p+6+LR7otu91Z8fZUdl+fq7eXLnimJ2Tb/5xxMTZO69eVqrra5X+lNOdr3e/c54qW//2O787O2/qxi/E1+8/vgiFqd8PxJbi70rbMc11nopq6+98j73feunv8xer/f9a3H5o8Xev+nd9jvNw7xd/LzZPfDw+OhHx9av/vOjvHOdOKaX20EqWZWFpWRaS+lXy7LPPzllJt/Wrld++z1T70ApsZRDsXkm3fXZW0m39aqVjTmbPRTae+pYHyGx+amsN01XNot9jy7LAeWv81r+7aHZfH73k0/Hqk1+TD8u2NP9v/+rW/JhaV0eLIFrsqwyn+f6qfehRpdlHQm3e1roc3Ms/eek+sf8+2QFmO9/xzLOxbPmybHxFNmdHNLdvj2e2Z/9PJMug23dsjx3PPZd3InXuc/9+Q7z+Le+IfXZ5JNTmuPHTH48/u7+YTA59S/zaxWfF7IN5HvpGfOay2+KoS/5NnH5Q0Zav94WI81NbdbyYPau1/c1n/ad45+FFU+7O+NIH/1N8p5iKOD7ec+V74rA0mu/vgTirbfr/zsJNyzEXVrbVNm/nNrbc8FvxqT/9x9lj2fKH/yJ+P719MTn2X8Tnfqn4QoFcpf9R2XdbP1J/vxZrZs9BxzG39WNtnH3OIfFntx8yex7v6br/1rkpz/0hxx4fkS2z674zPY4zl8/rfH2qqn1t32eu8/VO2vZXPeet9TcffHx857by+Wnt/Zk995m2Y0oNc5ynln7ndohj77NetY9t8zq317aNnechfz0fLM9bcU4PLl7XHusA7Mm+/qeb4tw3nxqPPVlcYezhlhuuz4PWXI7/2dfEa894fTHV3f77jMdX/3hTvPGc1rNEd6c+bJvOAlub1gXELBLmY7d885vxN3/5V62mzKtP/tl43ZlnxqaO9hOy9tdm7XmkTCvuzJaz9l25vK0PvazZ90Xtzyl96Ef9T9RX//A/p6hbTO1qxYrl2exl8ewzM7OHlxz84z8RRxx3Uuy19+i+ZnTL9ZfGJx88Jz7/y9WANwLZL/Xf/sQD8YZ/Xwkfi2z2WNZvHs2+7/r9uOi6Q+JjH+0IezVZtNdqoXqcp922vwDMy5/9yc3xtnNPi8efal1hXAov2XtF/I+v3hRnv+l1+fTu1Icnnq72IeW6ampraeQBtdpe5r+sLV+lWCJd6Wy2lpxdImXF4vGg++3V3odeDnrx+HBfM3rOee+O9W/9xZ512jlvj9dNvC3O7Gg/8vjXxMq99uq6zfnWQWe+KY697fa4p8u8hdTU3d+OBw49pHUreYmqPJYb57Xvh+LGy3+/ch6+G1/6wmQccsxRS3oM/WqxXqvhavDztHv0Vyml1Egr3UpetnRVftBnd+xDazwNU1XzX1qndes9JczWsq221nLFsulP0ZD9tzUspsu2/LZ+Gu/Why5Vmr1SOvVU5+XcPchdX4gP/uf01Vmvjvf+7ntjSb9fZ6H7fui6+PSl10Z5V/zQN18aF79+TTHFLOcJYI900/XfimOPfkUcfPDS3T988MEtcdvt98Vprz8pn9aHVh96OXDv5e237x9+akcxCwDgheFH256Kv/nrO+Lpp5fua0b32mtlnHDiUfHifVtvXdSH/m/h/LG9l7WH0q1P93nOKAAALIKX7jXW/p7S/E0ASimllFJKLWUVZq+UPjK966evAABgMa1a2Wjdvp+YmGhetfGanqF08oZrizEAABje+eefH/fdv62YapdC6YUXnDdYKJ2cTJ8OBwCA4VxyySWxdu3a0YXSDRs2FC0AAOwJpqenY2pqKpYvXx7j4+P514dWpeeMNpvNtueNJuUzSNP6MzMzA4XS9i0DAEANhFIAAGonlAIAULt5hdJNmzYVYwAAsHBDh1KBFACAURs4lKYwKpACAFBatmxZ/qn8NFyogUPpqaeemhcAAKQgmh4RdcIJJ+TDhQZTH3QCAGAoKYCmeuUrXxkrV66M973vfQsOpkIpAAADKwPpYYcdFq961avijDPOiKOOOiquvPLKBQVToRQAgIGl0HnBBRfE29/+9vi5n/u5OO644/JweuKJJ8Ytt9yyy7c+DUooBQBgYDt27IiNGzfGb/7mb8Y73vGOWL9+fZxyyilx/PHHx2tf+9p47rnniiWHM3Ao7fz0vU/jAwDseVIofeaZZ/J69tlnZ4dlpfnzMXAoLT9931kAALBQbt8DAFA7oRQAgNoJpQAA1E4oBQCgdo2JiYnmVRuviUemm0VTu8kbro3JycnYsGFD0QIAwJ5geno67r777vjBD34QW7duLVp3ajQa0Ww282HV/vvvHz/1Uz8Va9eujZmZmXx43/3birntVq1sxIUXnCeUAgDQXQqlX/va1/Lvt1+1alXRGnkQTdL89FjSZvO5vK18XNRjjz0e3//+P8TJJ588cCgd6vZ9+WxSzygFANgzTE1NzQbSFDy3b98Rz27fnoXPZ+Opp6bjySefjG0/ejIef3xbTD28NX74jw/k3/q0+aHN+TqDGjiUliG0+nxSwRQA4IUvhdFU6dua8trxXHFV9NmYmXkmvxqa6umnp2fnDcsHnQAAmFMrlO4Mpjuy8Ll9x/bYvn17PJuF0xRQm9n8MsAOa+BQ6hucAABYLPO6Ulq9lQ8AAAs1dCgVSAEAGLWhQqlACgDAYhg4lHYG0jRdtgEA8MKXHvU0Pj4eL3rReKxc+aLYb9994yUv2S8OOGD/WLXqgHjxi/cplhzevG7fC6MAAHuesbGxWH/m6+Nff/CD8cnLPhFXXvG5+N3fuTK+eu0fxXfv/E4WVFcWSw5v4FCarpB2KwAA9hyvetWr4pRTTokTTzpptg5bty4OOfTQYon5GfpKKQAAe6b0fNLPff6KeOvb3hannvq6OP74E+KYY46Ln/7pl8eBB67Jv3Z0voRSAAAGslvcvgcAALfvAQColdv3AADUzu17AAB2C+vXr49zzjknzsyGZR3/6lfHT/zkTxZLzM9QobR8RqlnlQIA7HnS7fsPffgjcfoZZ8Qxxxwbr3zlq+JlL3tFHHroj8d++x2wNLfvyxBafT6pYAoAsOfYsWNHPPPMMzEz80wWQGfiiW3b4vHHn4hHH30sHnnk0fjRj54slhzewKHUw/IBAFgs3lMKAEDthg6l1feTunIKAMAoDB1KvacUAIBRc/seAIDaDRxKq7ftAQDYszSbzbzSY6FSNZvZcEdrvFU74rnUltV8DBxKq7fsvacUAGDPkcLojiyAbt++PX8sVBpvTT/bqh3bZ+elZedjqNv35ftJywIA4IXtgAMOiMceeywajSw4jo3FsmVjsXz5slixYnnsvfdesc8++8R+++2bLfeS+LGXroqDVh+YP8t0/5fsX2xhMI2JiYnmVRuviUemu6fayRuujcnJydiwYUPRAgDAniB9Q9Mdd9wRP/jBD2LrI1uL1rmlQLp69eo44ogjYmZmJtauXRv33b+tmNtu1cpGXHjBeUIpAADdpVA6NTUVy5cvj/Hx8fxKaVWj0chv16dhVZpOldYfNJT69D0AALUTSgEAqJ1QCgBA7YRSAABqN+9Q6mH6AACMyrxCqTAKAMAoDR1KBVIAAEZtqFDq60UBAFgMA4dSgRQAgMUyr9v31Vv4bucDALBQA4fSdIW0WiVXTgEAWKihr5QCAMCozSuUun0PAMAozSuU9rqVDwAA8+H2PQAAtRNKAQConVAKAEDthFIAAGonlAIAUDuhFACA2g0cSsuvF+0sAABYqKGvlHpGKQAAo+b2PQAAtRNKAQCo3dCh1PtJAQAYtYFDabf3kgqmAACMgtv3AADUbuBQ6pY9AACLZajb90k1nJZtAACwEEPdvq++p1QgBQBgVLynFACA2gmlAADUTigFAKB2QikAALUTSgEAqJ1QCgBA7YYOpeVzSj1IHwCAURkqlFYfmu85pQAAjMrAodS3OAEAsFi8pxQAgNp5TykAALUbOpRW308qmAIAMApu3wMAUDuhFACA2g0cSqu37Mvb9j6JDwDAKAx1pbR8P2lZAAAwCm7fAwBQO6EUAIDaCaUAANROKAUAoHZCKQAAtRNKAQCo3cChtHw+abcCAICFGPpKqeeUAgAwam7fAwBQu4FDqaujAAAslnlfKS3fSyqoAgCwUPMKpQIpAACjNHQoFUgBABg1H3QCAKB2QikAALUbOpT6FD4AAKPmSikAALUTSgEAqJ1QCgBA7YRSAABqJ5QCAFA7oRQAgNoNFUrTtzlVCwAARmHgUFr9etHyOaWCKQAAo+D2PQAAtRs6lLo6CgDAqA0cSqtfLVq9lQ8AAAs1r/eUllw1BQBgFOb1nlJXSAEAGCUfdAIAoHZDv6c03bL3nlIAAEZpqCulKYRWCwAARsHtewAAaieUAgBQO6EUAIDaCaUAANROKAUAoHZCKQAAtRsqlJbPKK0+qxQAABZq4FBafWB++YxSwRQAgFFw+x4AgNoJpQAA1G7gUFq9Ze+2PQAAozTUldLO77yvjgMAwHy5fQ8AQO2GDqXVT+EDAMAoDBVKvZcUAIDFMK/3lLpKCgDAKHlPKQAAtRNKAQConVAKAEDthFIAAGonlAIAUDuhFACA2g0VSsvvva8WAAAs1MChtAygnc8qFUwBAFioed++F0YBABiVeYVSgRQAgFGa95VSXzUKAMCoDB1KXSUFAGDU5nWl1FVSAABGaehQKpACADBqA4fS6iOgykqEVAAAFmqoK6UpgHYWAAAs1LzeUwoAAKMklAIAUDuhFACA2gmlAADUTigFAKB2QikAALWbVyid66tGfRUpAADDGDqUCqQAAIzawKE0hc1+gXOu+QAA0MvAoXSub3DyDU8AAMyXDzoBAFA7oRQAgNoJpQAA1E4oBQCgdgOH0s5P1w87DQAAvTQmJiaaV228Jh6ZbhZN7SZvuDYmJydjw4YNRQsAAHuC6enpmJqaiuXLl8f4+HiMjbVfz2w0GtFsNvNhVZpOldafmZmJtWvXxn33byvmtlu1shEXXnCe2/cAANRPKAUAoHZCKQAAtRNKAQConVAKAEDthFIAAGo3r1Da6/mj5bNJPaMUAIBhDB1K+wXS5NRTT80rEUwBABjEwKHU1U8AABbLwKG0egW0m7nmAwBAL4vyQafqrXwAAJjLyEOpQAoAwLBGGkoFUgAA5mNkobQzkKbpsg0AAPoZOJR2hsxeobNXOwAA9NKYmJhoXrXxmnhkulk0tZu84dqYnJyMDRs2FC0AAOwJpqenY2pqKpYvXx7j4+MxNtZ+PbPRaESz2cyHVWk6VVp/ZmYm1q5dG/fdv62Y227VykZceMF5i/PpewAAGIZQCgBA7YRSAABqJ5QCAFA7oRQAgNoJpQAA1G5eobTXc0jLZ5R6VikAAMMYOpT2C6RJ+kan6rc6AQDAXAYOpXNd/ayGUQAAGMbAoVToBABgsYz8g07VK6pCLAAAgxh5KK1eUfWeUgAABjHyUAoAAMMaWSid64NQAADQy8ChtDN0dk5Xb9mX7d5TCgDAIBoTExPNqzZeE49MN4umdpM3XBuTk5OxYcOGogUAgD3B9PR0TE1NxfLly2N8fDzGxtqvZzYajWg2m/mwKk2nSuvPzMzE2rVr4777txVz261a2YgLLzjPe0oBAKifUAoAQO2EUgAAaieUAgBQO6EUAIDaCaUAANRuXqG0+nzSXjqfYwoAAL0MHUoHDaQAADCogUPpoFc+BVIAAIY1cChNXxk619eGloHU14sCADCMkX3QSSAFAGC+RhZKS523+d3OBwBgLiMLpeXt/bJKrpwCADCXkV8pBQCAYQ0cSrvdlu91a75zOQAA6KcxMTHRvGrjNfHIdLNoajd5w7UxOTkZGzZsKFoAANgTTE9Px9TUVCxfvjzGx8djbKz9emaj0Yhms5kPq9J0qrT+zMxMrF27Nu67f1sxt92qlY248ILz3L4HAKB+QikAALUTSgEAqJ1QCgBA7YRSAABqJ5QCAFC7eYXSbs8eLZ9b2lkAADCXoUPpXEGz19eNAgBALwOHUlc+AQBYLAOHUlc+AQBYLCP/oFN5RdVVVQAABjWyUFp9H2l5RVUwBQBgECO/UgoAAMMaWSh1yx4AgPkaOJR2hs7O6eot+7K9bAMAgH4aExMTzas2XhOPTDeLpnaTN1wbk5OTsWHDhqIFAIA9wfT0dExNTcXy5ctjfHw8xsbar2c2Go1oNpv5sCpNp0rrz8zMxNq1a+O++7cVc9utWtmICy84z3tKAQCon1AKAEDthFIAAGonlAIAUDuhFACA2gmlAADUbuhQWj6HtPqMUgAAWIihQmn1ofgejA8AwKgMHEp9SxMAAIvFe0oBAKid95QCAFC7oUNp9f2kgikAAKPg9j0AALUTSgEAqN3AobR6y768be+T+AAAjMJQV0rL95OWBQAAo+D2PQAAtRNKAQConVAKsAcY9BF+vZYb5hGA/ZYdZjvJqPZbmmuZhfZ9oevDnkwoBXgBWOzAkz5HsJB9pHXL9Xttp1ymWv3aF9tS7QdoaUxMTDSv2nhNPDLdLJraTd5wbUxOTsaGDRuKFgB2RylElR9CHSRQdfvAanUbnfrNqyqX6+zDIOsmvfYz1/6r+6vuv1tfks5tdW5/rulO3eZ322+p37ZgdzE9PR1TU1OxfPnyGB8fj7Gx9uuZjUYjms1mPqxK06nS+jMzM7F27dq47/5txdx2q1Y24sILznOlFOCFKAWeavVq6ycFqmr1aqtKbd32N4y0fOe2q9vtp7q/6vK92ufS7RiTXu2lcn653+q+q9PATkt6pbTbD/F8fjDn+sdprvlz6bV+Z//nu4+6tl9V7ms+++i2/c6+l+Z7DP0Mcnzz0XkMo97HYm+/qtzXqPaxVK9vdT+j3Hav/ieLdY4W89wkg2x/0OPutlyan9r77afb/F7r9NtWt/0Pqtxmv/320239cnyuYVVn2yDLwPPBUl4pXbJQmn4Yk84f2mSYH9K51pnPNqt6rd/ZPt/91LX9qnKZZLH6v1gWaz+d2x31fhZ7+1XltpPF6v9iWIpzUt32KPfXua1RH8sotp/WGWT5crnO5eeaTlJb0m0/3ZYfpXLfpbSvXn3snNdt3aRz/W7bSzrXT8p9zKXb9mB3skfcvh/kh7UqLd9vnbnmz2Wh689lru2nf5gW8o/ToP2f7zEOuv3FUvf+F2qhr++gnq/nqOy3X9DzU/58VF//alvZ3tlWtncz12uxWK9Vtz52VqfUVvYnDbv1rbpu5zbKdfqtV123Op10rl8d9iugXS2htPrDPKi5fogX+kNe9/YXapDtl+d9Pv1Y7P7PZbH3X/fxjcJCXt8XuqV6fefzb9sodDu+sm2u6qY8jjQsq3O62p6k8XJ7ncuk6tfeqbOP1eqmW3u57XJYXb/XttKyne3lsmV753RVt/WT6nFW+9VtWdiT1Xal9Pn8w1j+o7IYx5C2vRjbX8w+V5X9L/f3fLSY56p6bry+u1rs7ZfK7Y/qfFW3M+ptJ+W2hj035fLdqpuyvdxfGnaOd5uX1ivHk3Jetfq1d6r2s7O6qc4rxzu3322ZqnKdXqrrdtNv/dTeuV6/fcGeaslDaa8f6OeLsv+L9Q9K2m657cU4V2mb1e2Oah9lvxe7/4ut7HN5DKO22OcnbbO63VHto+z3Yvd/sbeflNst9zMK3bY56v5Xz00yaP/L9arVKfU1Vbd5g5jver1U+9pZ3VTnleOd57/bMqVy2fI8dK6bpqvrdptfDqtVtiXV/QHd1XKl9Pn6w/l8/scl9blapefjsSwWr+8L31K8xrvbOU/H3FmdOv/eVKXll/qYOvtbrfnoXL9zujy+8jxUjzct03n8abpcNynnl+uWVbZVlwV6W/JQWv6gPt90/uOVpkf5D82ot7fUXgj9T7y+3T3f+/9CUb4Gw/w7mpbtrGGk5auvfxoOu41hdPazOl1tn0taruxr57qd00l1vGrQ9m7LdZ63zvFyutSrfVB1rw8LtWShtPyB7fxL3+sHvlPnD8qw03MZdP1e7XPpXK9zuvP8JIOem6Rze53TVZ3LDaJze53TC+3/XDr31zk9Kou13cU+P1XV/o/qWBa7/0t5fhbDUvS/3O4gqsuWfarWsNKxpErrLtbrUvar2r9yn930O45+8+aS1h3F+qnK81ZWUh2W40AhPaf0oYe3Nf/uH5/oWhs3bmy+//3vTw8xVUoptRtXFoTyqk5X58/Vnmqudfqtm2o++0zVa/v9prvNK9s6h/2qXK9z2bmmq+3d1q/WoNtSaner6enp5g9/+MPmgw8+2Ny6dWvz0UcfbavHHntsdlitxx9/vPnEE080t2zZkq+fdMuZqVIOTXm0tk/fAzB6/a6+ZUGoGNvVXPOqV/j6LVtKy1SrV1uSxnv1e9iriWX/Ovvbq8plqsOqzmWr02Vbv/WTtFznvDRdrg+0LOnXjAKwdLqFoW5tpc55ZWjqtnyv7fTb/qDK/fay0O0vlX7nLxnFuYLF9oL8mlEAAJ5f9oivGQUAgJJQCgBA7YRSAABqJ5QCAFA7oRQAgNoJpQAA1E4oBQCgdkIpAAC1E0oBAKidUAoAQO2EUgAAaieUAgBQO6EUAIDaCaUAANROKAUAoHZCKQAAtRNKAQConVAKAEDthFIAAGonlAIAUDuhFACA2gmlAADUTigFAKB2QikAALUTSgEAqJ1QCgBA7YRSAABqJ5QCAFA7oRQAgNoJpQAA1E4oBQCgdkIpAAC1E0oBAKidUAoAQO2EUgAAaieUAgBQO6EUAIDaCaUAANROKAUAoHZCKQAAtRNKAQConVAKAEDthFIAAGonlAIAUDuhFACA2gmlAADUTigFAKB2QikAALUTSgEAqJ1QCgBA7YRSAABqJ5QCAFA7oRQAgNoJpQAA1E4oBQCgdkIpAAC1E0oBAKidUAoAQO2EUgAAaieUAgBQO6EUAIDaCaUAANROKAUAoHZCKQAAtRNKAQConVAKAEDthFIAAGonlAIAUDuhFACA2gmlAADUTigFAKB2QikAALUTSgEAqJ1QCgBA7YRSAABqJ5QCAFA7oRQAgNoJpQAA1E4oBQCgdkIpAAC1E0oBAKidUAoAQO2EUgAAaieUAgBQO6EUAIDaCaUAANROKAUAoHZCKQAAtRNKAQConVAKAEDthFIAAGonlAIAUDuhFACA2gmlAADUTigFAKB2QikAALUTSgEAqJ1QCgBA7YRSAABqJ5QCAFA7oRQAgNoJpQAA1E4oBQCgdkIpAAC1E0oBAKidUAoAQO2EUgAAaieUAgBQO6EUAIDaCaUAANROKAUAoHZCKQAAtRNKAQConVAKAEDthFIAAGonlAIAUDuhFACAgS1btizGx8fzWrFixeywrDR/PoRSAAAGlkLna17zmjjyyCPzOuaYY2L9+vVx0UUXxYYNG2JsbH7xUigFAGBgO3bsiFtvvTUPpCeddFKce+658f73vz/OO++8fPjcc88VSw5HKAUAYGAplKbauHFjrF69Og+nL3/5y+P444/PA2maNx9CKQAAfTUajbZK4TPVxz/+8fx2/itf+coFBdJEKAUAoK8UPLsF02azGW984xvzYZruXGYYQikAAH2lUJo+wNQZOlMQ3b59+4IDaSKUAgDQVxlIO5Vt1TDabblBCKUAAPTV7SrpIDUMoRQAgL56hdKkHC6UUAoAQF9PPfXUvGoYjYmJieZVG6+JR6abRVO7yRuujdNPP72YAgCA4axduzbuu39bMdVu1cpGXHjBeXOH0lccum8xBgAA87PgUAoAAIulDKXeUwoAQO2EUgAAaieUAgBQO6EUAIDaCaUAANRu9tP3AABQh9lHQhXTAABQg4j/HzfUdnK5fCdfAAAAAElFTkSuQmCC" alt="" />




基于visual Studio2013解决C语言竞赛题之0703乾坤大挪移的更多相关文章

  1. 基于visual Studio2013解决C语言竞赛题之0401阶乘

      题目 解决代码及点评 这个是一道经典的教科书题目,基本上每本基础的c/c++语言教科书都会有这个题目 用来演示循环语句 #include <stdio.h> #include ...

  2. 基于visual Studio2013解决C语言竞赛题之0205位数求和

     题目

  3. 基于visual Studio2013解决C语言竞赛题之0201温度转换

    题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> void main() { float f; float c; float ...

  4. 基于visual Studio2013解决C语言竞赛题之0409 100以内素数

       题目 解决代码及点评 在已经知道素数是怎么判断的基础上,增加循环,可以判断出100以内的素数 /******************************************* ...

  5. 基于visual Studio2013解决C语言竞赛题之0408素数

      题目 解决代码及点评 判断一个数是不是素数的方法,一般是看n是不是能被n以内的某个整数(1除外)整除 为了提高效率,这个整数范围一般缩小到n的平方根 如果在这个范围内的整数都不能整除,那么 ...

  6. 基于visual Studio2013解决C语言竞赛题之0407最大值最小值

      题目 解决代码及点评 这道题考察循环和比较 /*********************************************************************** ...

  7. 基于visual Studio2013解决C语言竞赛题之0406数列求和

      题目 解决代码及点评 这个题目,还是考察for循环的使用 以及数列规律,该数列的特点是第n个分子 = 第n-1个分子 + 第n-2个分子,分母也是此规律 而另外一个规律是第n个分子和第n- ...

  8. 基于visual Studio2013解决C语言竞赛题之0405阶乘求和

      题目 解决代码及点评 这道题和上一道题类似,第n个累加项 = n-1累加项的n倍 由于有这个规律,我们可以用一个for循环实现 但是例子代码并没有这么做,大家可以回去修改下代码,使得代码更 ...

  9. 基于visual Studio2013解决C语言竞赛题之0404循环求和

      题目 解决代码及点评 这道题考验for循环和一个简单的算法 因为每次累加的值有规律,后面一次累加是前面一次累加的两倍 所以可以用简单的循环,计算累加项和累加结果 /************ ...

随机推荐

  1. BZOJ 1599: [Usaco2008 Oct]笨重的石子( 枚举 )

    直接枚举 ------------------------------------------------------------------------------- #include<cst ...

  2. 类似jquery的一个demo

    通过以下的demo,可以大体知道jquery的一些组织结构以及一些实现方法. 实际上jquery就是一个全局变量,只是在这个变量上添加了各种属性和方法. 首先我们要理解什么是匿名函数自执行,简单点就是 ...

  3. PHP 时间和日期 总结

    PHP 时间戳 UNIX 时间戳(timestamp)是 PHP 中关于时间日期一个很重要的概念,它表示从 1970年1月1日 00:00:00 到当前时间的秒数之和. 可以使用time()函数来获取 ...

  4. linux操作系统死机处理办法

    这个方法可以在各种情况下安全地重启计算机.大家在键盘上找,可以找到一个叫做“Sys Rq”的键,在台机的键盘上通常与 Prt Sc 共键,在笔记本可能在其他位置,如 Delete.以台机为例,要使用这 ...

  5. C++基础-位运算

    昨天笔试遇到一道题,让实现乘法的计算方法,设计方案并优化,后来总结位运算相关知识如下: 在计算机中,数据是以1010的二进制形式存储的,1bytes = 8 bits,bit就是位,所以位运算就是对每 ...

  6. Amazon Hiring Campus 2013 - Final 6

    Let's assume that there is a simple market for beans. Every day there is a published bean price in t ...

  7. 用JS判断用户使用的是手机端还是pc端访问

    最近项目中用到一个应用,当访问同一个网站地址的时候,例如:www.xxx.com的时候,如果当前客户端是pc则跳转到专注于pc的部分,如果当前客户机是手机,则跳转到专注于手机的部分,秉承一贯的习惯,b ...

  8. 一維條碼編碼規則(1D Barcode)

    1.Code 39 條碼:又分 標準型Code 39 條碼(Standard Code 39):資料內容包含有0~9數字,A~Z英文字母,”+”,”-“,”*”,”/”,”%”,”$”,”.”以及sp ...

  9. BZOJ 1665: [Usaco2006 Open]The Climbing Wall 攀岩

    题目 1665: [Usaco2006 Open]The Climbing Wall 攀岩 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 197  Sol ...

  10. exp-00091 oracle错误的解决办法

    在进行数据库导入导出使用命令exp.imp经常出现exp-00091 这样的错误的时候,我们需要做的是对于环境变量NLS_LANG设置正确 首先,我们先查看需要导出的数据库的字符编码    selec ...