POJ 3384 Feng Shui 凸包直径 + 半平面交
G++一直没有过了 换成 C++果断A掉了。。。It's time to bet RP.
题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标。
思路:将多边形的边向里平移圆的的半径R,然后求新多边形的距离最长的两个点。
平移多少废了一点脑筋,其他的就都是现成的模板了。
这个是平移的函数,自己想得,不知道还有没有更简便的。左右平移只需要改一下 向量 V
void Panning_Edge(P &a1,P &a2,double dis)
{
//向v的右侧平移
P v = {a2.y-a1.y,a1.x-a2.x}; double t = dis/Cal_Point_Dis(a1,a2); a1.x = a1.x+v.x * t;
a1.y = a1.y+v.y * t; a2.x = a2.x+v.x*t;
a2.y = a2.y+v.y*t;
}
PS:好吧,我承认自己没想出,然后翻了别人的题解。。。。这个内推边真的用的好巧哇
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <string> #define LL long long
#define EPS (1e-9)
#define Right 1;
#define Left -1; using namespace std; struct P
{
double x,y;
} p[55],tp[2510],cp[2510]; double X_Mul(P a1,P a2,P b1,P b2)
{
P v1 = {a2.x-a1.x,a2.y-a1.y},v2 = {b2.x-b1.x,b2.y-b1.y};
return v1.x*v2.y - v1.y*v2.x;
} P Cal_Cross_Position(P a1,P a2,P b1,P b2)
{
double t = fabs(X_Mul(a1,a2,a1,b1))/fabs(X_Mul(a1,a2,b2,b1));
P p = {b1.x + (b2.x-b1.x)*t,b1.y + (b2.y-b1.y)*t};
return p;
} double Cal_Point_Dis(P a1,P a2)
{
return sqrt((a2.x-a1.x)*(a2.x-a1.x) + (a2.y-a1.y)*(a2.y-a1.y));
} void Panning_Edge(P &a1,P &a2,double dis)
{
//向v的右侧平移
P v = {a2.y-a1.y,a1.x-a2.x}; double t = dis/Cal_Point_Dis(a1,a2); a1.x = a1.x+v.x * t;
a1.y = a1.y+v.y * t; a2.x = a2.x+v.x*t;
a2.y = a2.y+v.y*t;
} int Cut_Polygon(P a1,P a2,P *tp,int n,P *cp,double rad)
{
Panning_Edge(a1,a2,rad); double xm1,xm2;
int i ,top = 0;
for(i = 0;i < n; ++i)
{
xm1 = X_Mul(a1,a2,a1,tp[i]),xm2 = X_Mul(a1,a2,a1,tp[i+1]);
if(xm1 < EPS && xm2 < EPS)
{
cp[top++] = tp[i];
}
else if(xm1 < EPS || xm2 < EPS)
{
if(xm1 < EPS)
{
cp[top++] = tp[i];
}
cp[top++] = Cal_Cross_Position(a1,a2,tp[i],tp[i+1]);
}
}
cp[top] = cp[0];
return top;
} void Cal_Center_Position(P *tp,P *cp,P *p,int n,double rad)
{
int i,j,top; for(i = 0;i <= n; ++i)
{
tp[i] = p[i];
} for(top = n,i = 0;i < n; ++i)
{
top = Cut_Polygon(p[i],p[i+1],tp,top,cp,rad);
for(j = 0;j <= top; ++j)
{
tp[j] = cp[j];
}
//点集内有重点
} //求凸包的直径 鉴于点集不是很大 也懒得写旋转卡壳了 double TempDis,MaxDis = -1;
int s1,s2; for(i = 0;i <= top; ++i)
{
for(j = 0;j <= top; ++j)
{
TempDis = Cal_Point_Dis(tp[i],tp[j]);
if(MaxDis < TempDis)
{
MaxDis = TempDis,s1 = i,s2 = j;
}
}
} //最终答案
printf("%.4lf %.4lf %.4lf %.4lf\n",tp[s1].x,tp[s1].y,tp[s2].x,tp[s2].y); } int main()
{
int i,n;
double rad;
while(scanf("%d %lf",&n,&rad) != EOF)
{
for(i = 0; i < n; ++i)
{
scanf("%lf %lf",&p[i].x,&p[i].y);
} p[n] = p[0]; Cal_Center_Position(tp,cp,p,n,rad);
}
return 0;
}
POJ 3384 Feng Shui 凸包直径 + 半平面交的更多相关文章
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- poj 3384 Feng Shui (Half Plane Intersection)
3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...
- POJ 3384 Feng Shui
http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...
- POJ 3384 Feng Shui (半平面交)
Feng Shui Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3743 Accepted: 1150 Speci ...
- POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...
- POJ 3384 Feng Shui --直线切平面
题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交
题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...
- 【kuangbin专题】计算几何_半平面交
1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...
随机推荐
- MySql每月增加一个分区以及查询所有分区
create PROCEDURE Usp_Partition() BEGIN DECLARE _time datetime; DECLARE num int; DECLARE _p VARCHAR(2 ...
- relative、absolute和float
relative.absolute和float position:relative和position:absolute都可以改变元素在文档中的位置,都能激活元素的left.top.right.bo ...
- python 以面向对象的方式创建线程 实现售票系统
---恢复内容开始--- 转载或借鉴请注明转自http://www.cnblogs.com/FG123/p/5068556.html 谢谢! 通过面向对象的方法实现多线程,其核心是继承thread ...
- poj 3243 Clever Y 高次方程
1 Accepted 8508K 579MS C++ 2237B/** hash的强大,,还是高次方程,不过要求n不一定是素数 **/ #include <iostream> #inclu ...
- python数据库连接
现在装python基本都内置了sqlite连接,写成如下形式即可 from sqlite3 import dbapi2 as sqlite 如果需要insert或update东西,之后的cur必须co ...
- DllMain加载其他DLL造成的死锁问题及其解决办法
使用VS 2008新建一个MFC ActiveX工程,因为在工程里要用到GDI+.我习惯把初始化GDI+库的代码放在应用程序类的InitInstance函数,对应的销毁代码放在ExitInstance ...
- js动态创建表格方法
window.onload = function(){ var table = document.createElement('table'); table.border = 1; table.wid ...
- js 字符串为空
content.replace(/(^\s)|(\s$)/g, "")
- LeetCode 二叉树的最小深度
计算二叉树的最小深度.最小深度定义为从root到叶子节点的最小路径. public class Solution { public int run(TreeNode root) { if(root = ...
- TextView实现多个TextView对象的走马灯效果
1:自定义一个控件继承TextView,重写isFocused方法,返回值为true; package com.example.helloandroid; import android.R.bool; ...