The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.

There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.

What 12-digit number do you form by concatenating the three terms in this sequence?

题目大意:

1487, 4817, 8147这个序列,每个比前一个递增3330,而且这个序列有两个特点:1. 序列中的每个数都是质数。2. 每个四位数都是其他数字的一种排列。

1,2,3位组成的三个质数的序列中没有具有以上性质的。但是还有另外一个四位的递增序列满足这个性质。

如果将这另外一个序列的三个数连接起来,组成的12位数字是多少?

//(Problem 49)Prime permutations
// Completed on Thu, 13 Feb 2014, 15:35
// Language: C
//**********************************************
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus///**********************************************
#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h>
#include<string.h>
int a[]; bool prim(int n)
{
int i;
for(i = ; i * i <= n; i++) {
if(n % i ==) return false;
}
return true;
} int cmp(const void *a, const void *b)
{
return (*(char*)a - *(char*)b);
} void init()
{
int i, j;
i = ;
j = ;
a[] = ;
while(j < ) {
if(prim(i)) {
a[j++] = i;
}
i += ;
}
} bool judge(int a, int b, int c)
{
char A[], B[], C[];
sprintf(A, "%d", a);
qsort(A, , sizeof(char), cmp);
sprintf(B, "%d", b);
qsort(B, , sizeof(char), cmp);
sprintf(C, "%d", c);
qsort(C, , sizeof(char), cmp);
if(strcmp(A, B)== && strcmp(A, C) == )
return true;
return false;
} void solve()
{
int i, b, c, d;
i = ;
init();
while(a[i++] < );
for(; i < ; i++) {
b = a[i]; c = a[i] + ; d = a[i] + ;
if(d < ) {
if(prim(b) && prim(c) && prim(d)) {
if(judge(b, c, d)) {
printf("%d %d %d\n", b, c, d);
}
}
}
} } int main()
{
solve();
return ;
}
Answer:
296962999629

(Problem 49)Prime permutations的更多相关文章

  1. (Problem 62)Cubic permutations(待续)

    The cube, 41063625 (3453), can be permuted to produce two other cubes: 56623104 (3843) and 66430125 ...

  2. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  3. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  4. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  5. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  6. (Problem 37)Truncatable primes

    The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...

  7. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  8. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  9. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

随机推荐

  1. 【Android进阶学习】shape和selector的结合使用

    shape和selector是Android UI设计中经常用到的,比如我们要自定义一个圆角Button,点击Button有些效果的变化,就要用到shape和selector.可以这样说,shape和 ...

  2. pywebkitgtk安装出现的问题

    configure 文件里 print sys.prefix 等不能支持python3的原因 依据http://blog.csdn.net/jklfjsdj79hiofo/article/detail ...

  3. Pat(Advanced Level)Practice--1043(Is It a Binary Search Tree)

    Pat1043代码 题目描写叙述: A Binary Search Tree (BST) is recursively defined as a binary tree which has the f ...

  4. 创建Java项目报错处理

    好久没用Eclipse编写Java程序了,今天创建一个Java项目的时候,老报错,错误信息如下: Implicit super constructor Object() is undefined fo ...

  5. java之观察者模式

    import java.util.Observable; import java.util.Observer; class House extends Observable {     private ...

  6. Linux 中执行命令

    第一步: 在txt文件(文件名为cmd_file)中写入代码:echo this is content! 第二步: 授权chmod 555 cmd_file 第三步: 运行 ./cmd_file -- ...

  7. JAVA泛型实现一个堆栈类

    package com.xt.test; /** * 泛型实现堆栈,thinking in java中的例子 * * @author Administrator * * @param <T> ...

  8. 终于懂了:两个UI组件同时在操作是不可能实现的

    // 目的:从某个对话框里,选择一些路径,然后用Tree自动展开这些路径,但至少需要几秒钟时间 // 问题:在这几秒钟期间,显示一个等待对话框,只能开多线程,因为后台继续要处理tree的一些事情.等待 ...

  9. Delphi 重启应用程序(创建Bat文件的Process)

    Delphi 重启应用程序在工程主文件中加入Delay(500); //启动程序时请延时一段时间,否则只能重启一次 procedure RestartApp; var BatchFile: TextF ...

  10. 转:CSS Overflow 属性

    原文:CSS Overflow 属性译自:The CSS Overflow Property版权所有,转载请注明出处,多谢!! 根据CSS的盒模型概念,页面中的每个元素,都是一个矩形的盒子.这些盒子的 ...