1、TF-IDF

  TF-IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明。描述单个term与特定document的相关性。

  TF(Term Frequency): 表示一个term与某个document的相关性。公式为: term在document中出现的次数/document中所有term出现的总次数.

  IDF(Inverse Document Frequency):表示一个term表示document的主题的权重大小。

  主要是通过包含了该term的docuement的数量和docuement set的总数量来比较的。出现的次数越多,权重越小。公式是log(D/Dt)   D是文档集合大小

Dw是包含了该Word的文档的总数。根据关键字k1,k2,k3进行搜索结果的相关性就变成TF1*IDF1 + TF2*IDF2 + TF3*IDF3。比如document1的term总量

为1000,k1,k2,k3在document1出现的次数是100,200,50。包含了 k1, k2, k3的docuement总量分别是1000, 10000,5000。document set的总

量为10000。

  TF1 = 100/1000 = 0.1;                           TF2 = 200/1000 = 0.2;                           TF3 = 50/1000 = 0.05;

  IDF1 = log(10000/1000) = log(10) = 2.3; IDF2 = log(10000/100000) = log(1) = 0;  IDF3 = log(10000/5000) = log(2) = 0.69;

  这样关键字k1,k2,k3与docuement1的相关性= 0.1*2.3 + 0.2*0 + 0.05*0.69 = 0.2645;其中k1比k3的比重在document1要大,k2的比重是0.

  TF/IDF 的概念就是一个特定条件下、关键词的概率分布的交叉熵(Kullback-Leibler Divergence)。

  TF和IDF的其他解释可参阅《数学之美》(吴军著),这本书超赞。

2、MapReduce 计算

  不讨论实现的细节,只考虑如何构造其中的Key和value。

  为了计算TF-IDF ,需要分别计算TF和IDF,TF为单词在文档中的频率,因此首先需要知道单词 word在文档Doc中出现的频度,其次需要知道当前Doc中单词的个数。

第一个JOB计算word在Doc中的频度。

  MAP的输入:Key:行号 Value为对应文档的一行。在map函数中将每一行切分为一个个的单词,当然这么做其实是不完全正确的,比如对于词组 set

out,其原本的意思是出发,但是将其按单词进行划分后变为 set 和out,这不是我们原本的意愿。在此,为了简单起见我们忽略这些细节。MAP的输出:

Word@Doc   1。也就是 单词@文档名称 作为Key,Value为 1,表示 单词Word在Doc中出现了一次。

  MapReduce的会根据Key排序并组合相应的Value,因此JOB1的Reduce输入为:Key:Word@Doc  Value:1,1,1,1... 因此可以统计出单词Word在

Doc中一共 出现了多少次。将Reduce的输出设为:Key:Doc  Value:Word->N。表示文档Doc中单词Word出现了N次。经过MapReduce的shuffle过程

后,Reduce的输出变为:Key:Doc  Value:Word1->N1  Word2->N2,... ... ,Wordk->Nk。JOB1的Reduce输出可以作为JOB2-Map的输入。

  到此,第一个JOB就统计了单词在不同文档的频度,Reduce的输出为第二个JOB的输入。

  第二个JOB计算一个文档所有单词的个数和某一单词在文档中的频率TF。

  MAP的输入:Key:Doc  Value:Word1->N1,Word2->N2,... ...  。因此Map函数中可以计算一个文档中单词的总数Total,文档中每个单词的

个数是已知的,因此可以计算单词Word针对文档Doc的TF。将当前MAP的输出设为:Key:Word,Value:Doc  N/Total ,也就是单词作为Key,所在文档

Doc和对应的TF作为Value。经过shuffle后,JOB2-Reduce的输入:Key:Word,Value:Doc1 N1/Total  Doc2 N2/Total ... ... ,此时知道单词Word

在Doc1,Doc2... 等文档中出现,通过MapReduce获取文档总数,就可以计算Word针对每个文档Doc的IDF值,此时Reduce的输出变为:Key:Word@Doc Value:TF IDF TF*IDF。

  至此,TF-IDF的计算完毕。对上述过程的优化,后续探讨。

  

  

MapReduce ---- TD-IDF的更多相关文章

  1. 【Elasticsearch学习】文档搜索全过程

    在ES执行分布式搜索时,分布式搜索操作需要分散到所有相关分片,若一个索引有3个主分片,每个主分片有一个副本分片,那么搜索请求会在这6个分片中随机选择3个分片,这3个分片有可能是主分片也可能是副本分片, ...

  2. SQL Server优化技巧之SQL Server中的"MapReduce"

    日常的OLTP环境中,有时会涉及到一些统计方面的SQL语句,这些语句可能消耗巨大,进而影响整体运行环境,这里我为大家介绍如何利用SQL Server中的”类MapReduce”方式,在特定的统计情形中 ...

  3. 运用mapreduce计算tf-idf

    问题描写叙述:给定一个大文件,文件里的内容每一行为:文档名,文档内容. input 文档名1,word1 Word2 ....... 文档名2,word1 Word2 ....... output w ...

  4. Hadoop MapReduce开发最佳实践(上篇)

    body{ font-family: "Microsoft YaHei UI","Microsoft YaHei",SimSun,"Segoe UI& ...

  5. 【Hadoop学习之十二】MapReduce案例分析四-TF-IDF

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 概念TF-IDF(term fre ...

  6. 云计算大会有感—MapReduce和UDF

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.參会有感       首先还是非常感谢CSDN能给我票,让我有机会參加这次中国云计算峰会.感觉不写点什么对不 ...

  7. Mapreduce的文件和hbase共同输入

    Mapreduce的文件和hbase共同输入 package duogemap;   import java.io.IOException;   import org.apache.hadoop.co ...

  8. mapreduce多文件输出的两方法

    mapreduce多文件输出的两方法   package duogemap;   import java.io.IOException;   import org.apache.hadoop.conf ...

  9. mapreduce中一个map多个输入路径

    package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; imp ...

随机推荐

  1. 使用 Struts 2 实现国际化

    struts2国际化(I18N) 国际化也叫I18N,是Internationalization的简称.Struts2国际化是建立在Java国际化基础上,只是Struts2框架对Java国际化进行了进 ...

  2. 用JQuery实现表格隔行变色和突出显示当前行

    用JQuery实现表格隔行变色和突出显示当前行 上源码 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "htt ...

  3. js 完美兼容浏览器的复制功能

    1,js结合swf的复制功能,完美兼容火狐,谷歌,360,ie8,使用示例:(ps:引入copy.swf比较重要,文件传送门 解压密码:http://www.bieanju.com/,为了防止360删 ...

  4. JS如何将UTC格式时间转本地格式

    Date.prototype.format = function (format) { var o = { "M+": this.getMonth() + 1, //month & ...

  5. 判断是否联网_检测网络的类型为3G、2G、wap、wifi

    判断是否联网_检测网络的类型为3G.2G.wap.wifi  判断是否联网: /*** * judge Internet is available * * @author wei-spring * @ ...

  6. EL表达式(转)

    转自:http://www.cnblogs.com/Fskjb/archive/2009/07/05/1517192.html EL 全名为Expression Language EL 语法很简单,它 ...

  7. 国标电表DLT645转MODBUS TCP协议转换器MRD-5021,工业设备,浪涌三级保护MRD

    DL/T645转ModbusTcp协议转换器 MRD-5021具有1 路RS485及1路以太网接口,最多支持同时采集5个DL/T645-1997或者5个2007协议国标电表设备,支持DL/T645协议 ...

  8. jQuery学习-事件之绑定事件(五)

    大家应该还记得dispatch方法中有这么一段代码: event = jQuery.event.fix( event ); event的修复是在fix这个方法中的,而在fix中是通过 new jQue ...

  9. opensatck 使用devstack在 laptop上的 网络配置

    http://docs.openstack.org/developer/devstack/guides/neutron.html Physical Network Setup In most case ...

  10. aix Mysql-Rpm puppet puppetAgent

    http://www.bullfreeware.com/toolbox.php   (Large Open Source Software Archieve for AIX 提供MySQL5.1 fo ...