Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

 
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

1 ≤ m ≤ n ≤ 500 000

 
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
 
Sample Input
2
5 5 0 0 5
1
2
1
2
3
6 2 2 1000000000 6
1
2
 
Sample Output
Case #1: 15 Case #2: 13

大致题意:

  求上升子序列的个数

  序列怎么出来的呢,好难懂:

    for i = 0 to n-1
    print A[i mod m]
    A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

  取m=3为例 输入完a[] 以后,a[]不是序列 要按照他的循环 打印 a[0] ,a[1], a[2],a[0],a[1],a[2]....如此,每打印一个做一次A第三行的变换,最后就是0 -> n-1 的序列了。

解题思路:

  树状数组+离散化。

  动规求法: dp[i]=∑dp[j](j<i&&ans[j]<ans[i])

  依据树状数组快速统计可加类区间数据的应用,

  可转化成 dp[i]=sum(f[i]-1)+1 ;即以前f[i]-1个数据为底的个数再加上自身。

  1. #include <cstdio>
  2. #include <algorithm>
  3. #include <cstring>
  4. using namespace std;
  5. #define N 500005
  6. #define mod 1000000007
  7. long long c[N],a[N],b[N],f[N],T,n,m,x,y,z,ans,size;
  8. void modify(int x,int num){while(x<=n)c[x]+=num,c[x]%=mod,x+=x&-x;}
  9. long long sum(int x){int s=;while(x>)s+=c[x],s%=mod,x-=x&-x;return s;}
  10. void ini(){
  11. memset(c,,sizeof(c));
  12. ans=;
  13. scanf("%d%d%lld%lld%lld",&n,&m,&x,&y,&z);
  14. for(int i=;i<m;i++) scanf("%lld",&a[i]);
  15. for(int i=;i<n;i++){
  16. f[i]=b[i+]=a[i%m];
  17. a[i%m]=(x*a[i%m]+y*(i+))%z;
  18. }
  19. }
  20. int main(){
  21. scanf("%d",&T);
  22. for(int K=;K<=T;K++)
  23. {
  24. ini();
  25. sort(b+,b+n+);//离散化
  26. size=unique(b+,b+n+)-(b+);
  27. for(int i=;i<n;i++){
  28. int p=lower_bound(b+,b+size+,f[i])-b;
  29. long long tot=sum(p-)+;
  30. ans+=tot;
  31. ans%=mod;
  32. modify(p,tot);
  33. } printf("Case #%d: %lld\n",K,ans);
  34. } return ;
  35. }

HDU 3030 - Increasing Speed Limits的更多相关文章

  1. hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)

    Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  2. Increasing Speed Limits

    Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...

  3. hdu FatMouse's Speed 动态规划DP

    动态规划的解决方法是找到动态转移方程. 题目地址:http://acm.hdu.edu.cn/game/entry/problem/show.php?chapterid=3&sectionid ...

  4. HDU FatMouse's Speed 基本DP

    题意:要求找到的体重递增,速度递减的老鼠,并且输出最长的长度数,而且输出各自的序列数.Special Judge 思路:先按体重由小到大排序,再找最长速度递减序列. 转移方程:mou[i].w> ...

  5. hdu 3030

    这道题主要就是问你,长度为n的序列,有多少种上升的子序列 当前点的情况种数等于前面所有小于它的点的种数相加 + 1 1就是只有这一个点的时候的序列 那就是要多次查询前面比它小的点的种数的和 那么就是区 ...

  6. HDU 6852 Increasing and Decreasing 构造

    题意: 给你一个n,x,y.你需要找出来一个长度为n的序列,使得这个序列满足最长上升子序列长度为x,最长下降子序列长度为y.且这个序列中每个数字只能出现一次 且要保证最后输出的序列的字典序最小 题解: ...

  7. HDU题解索引

    HDU 1000 A + B Problem  I/O HDU 1001 Sum Problem  数学 HDU 1002 A + B Problem II  高精度加法 HDU 1003 Maxsu ...

  8. POJ 3653 &amp; ZOJ 2935 &amp; HDU 2722 Here We Go(relians) Again(最短路dijstra)

    题目链接: PKU:http://poj.org/problem? id=3653 ZJU:problemId=1934" target="_blank">http ...

  9. HDU 2722 Here We Go(relians) Again (spfa)

    Here We Go(relians) Again Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/ ...

随机推荐

  1. 使用SOAPUI测试WEBAPI接口

    其实很简单,用起来也挺方便的. 首先,先去百度下SoapUI 下载,下载安装好后,打开软件. 1.新建一个项目 点击 Create Empty Project 按钮后,会自动新建一个项目,名字默认为: ...

  2. MVC 过滤器 ActionFilterAttribute

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  3. ckplayer 项目实际应用代码整理,支持标清,高清,超清切换!

    ckplayer是个免费,小巧,功能强大的视频播放器,前段时间有个项目需要做个收费视频播放的功能,于是就用了ck,目前项目已经弄完,完美支持pc和手机端的播放,重要的是可以支持清晰度切换,最后加了个是 ...

  4. 认识Java里面的Thread

    在一个特定的主线程执行的过程中,如果我们还需要在主线程的过程中插播一个线程,做其他动作.那么我们就可以利用Java的Thread类,创建一个新的线程. 一:线程简单实现的三种方式 (1)第一种创建线程 ...

  5. 计算球体积,hdu-2002

    计算球体积 Problem Description 根据输入的半径值,计算球的体积.   Input 输入数据有多组,每组占一行,每行包括一个实数,表示球的半径.   Output 输出对应的球的体积 ...

  6. SQL Server 主动防止阻塞的 1 方法

    方法 1. set lock_timeout 5000;  这里设置超时为5秒; 例子: 连接A begin tran             update dbo.TestTable        ...

  7. android--graphics

    Color类 Constants |____BLACK, BLUE, CYAN Methods |____argb,rgb,alpha, red, green, blue |____parseColo ...

  8. JIRA项目跟踪管理工具简介与安装

    1.什么是JIRA JIRA是Atlassian公司出品的项目与事务跟踪工具,被广泛应用于缺陷跟踪.客户服务.需求收集.流程审批.任务跟踪.项目跟踪和敏捷管理等工作领域. Atlassian2002年 ...

  9. A Knight's Journey 分类: dfs 2015-05-03 14:51 23人阅读 评论(0) 收藏

    A Knight’s Journey Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 34085 Accepted: 11621 ...

  10. web站点监控脚本web_status_code,tomcat 80,oracle1521

    1,完整的监控脚本如下 #!/bin/bash #web_status_code=`curl -o /dev/null -s -w "http_code:%{http_code}" ...