数据结构 B树、B-树、B+树、B*概念
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
2.所有结点存储一个关键字;
3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;
如:
B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;
否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入
右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树
的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构
(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
如:
但B树在经过多次插入与删除后,有可能导致不同的结构:
右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的
树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就
是所谓的“平衡”问题;
实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树
结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的
策略;
B-树
是一种多路搜索树(并不是二叉的):
1.定义任意非叶子结点最多只有M个儿子;且M>2;
2.根结点的儿子数为[2, M];
3.除根结点以外的非叶子结点的儿子数为[M/2, M];
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1;
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的
子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8.所有叶子结点位于同一层;
如:(M=3)
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果
命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为
空,或已经是叶子结点;
B-树的特性:
1.关键字集合分布在整颗树中;
2.任何一个关键字出现且只出现在一个结点中;
3.搜索有可能在非叶子结点结束;
4.其搜索性能等价于在关键字全集内做一次二分查找;
5.自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少
利用率,其最底搜索性能为:
其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占
M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;
B+树
B+树是B-树的变体,也是一种多路搜索树:
1.其定义基本与B-树同,除了:
2.非叶子结点的子树指针与关键字个数相同;
3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树
(B-树是开区间);
5.为所有叶子结点增加一个链指针;
6.所有关键字都在叶子结点出现;
如:(M=3)
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在
非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好
是有序的;
2.不可能在非叶子结点命中;
3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储
(关键字)数据的数据层;
4.更适合文件索引系统;
B*树
是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3
(代替B+树的1/2);
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据
复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父
结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分
数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字
(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之
间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B*树分配新结点的概率比B+树要低,空间使用率更高;
小结
B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于
走右结点;
B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键
字范围的子结点;
所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点
中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率
从1/2提高到2/3;
数据结构 B树、B-树、B+树、B*概念的更多相关文章
- 数据结构图文解析之:AVL树详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- SDUT 3340 数据结构实验之二叉树一:树的同构
数据结构实验之二叉树一:树的同构 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定两棵树 ...
- COJ 0970 WZJ的数据结构(负三十)树分治
WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...
- COJ 0981 WZJ的数据结构(负十九)树综合
WZJ的数据结构(负十九) 难度级别:E: 运行时间限制:3500ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 WZJ的数据结构中有很多都是关于树的.这让很多练习 ...
- [置顶] ※数据结构※→☆非线性结构(tree)☆============树结点 链式存储结构(tree node list)(十四)
结点: 包括一个数据元素及若干个指向其它子树的分支:例如,A,B,C,D等. 在数据结构的图形表示中,对于数据集合中的每一个数据元素用中间标有元素值的方框表示,一般称之为数据结点,简称结点. 在C语言 ...
- 数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL
树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构. a.树是n ...
- 【数据结构】B-Tree, B+Tree, B*树介绍
[摘要] 最近在看Mysql的存储引擎中索引的优化,神马是索引,支持啥索引.全是浮云,目前Mysql的MyISAM和InnoDB都支持B-Tree索引,InnoDB还支持B+Tree索引,Memory ...
- 数据结构与算法(九):AVL树详细讲解
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希 ...
- Java数据结构和算法 - 什么是2-3-4树
Q1: 什么是2-3-4树? A1: 在介绍2-3-4树之前,我们先说明二叉树和多叉树的概念. 二叉树:每个节点有一个数据项,最多有两个子节点. 多叉树:(multiway tree)允许每个节点有更 ...
随机推荐
- oracle 库文件解决的方法 bad ELF interpreter: No such file or directory
今天是2014-05-27,今天遇到一个lib问题,再次记录一下.这是一个案例,更是一种解决该问题的方法过程. 当我们在使用sqlplus 登陆unix数据库的时候,有可能出现类似:xxxxxx ba ...
- hdu 4930 Fighting the Landlords--2014 Multi-University Training Contest 6
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4930 Fighting the Landlords Time Limit: 2000/1000 MS ...
- linux C连接mysql
linux 环境下C语言连接数据库首先要配置环境 1,确定你的linux下安装mysql我们可以做个测试. 打开你的终端,在终端下输入:service mysqld status [root@bogo ...
- PCL库配置出现的问题(WIN10+VS2013)
边看电影边配终于配好了,中间出现了一些问题,在网上很难搜到,可能每个人都碰到的不同.摸索了一会终于都解决了,记录在这里,免得又碰到. PCL是什么东西就不在此介绍了. 主要是参考这篇博客做得,不过我后 ...
- linux 能访问内网,但不能访问外网?解决方案
用iptables就可以了 iptables -F iptables -t nat -F iptables -A INPUT -s -d -j ACCEPT iptables -A INPUT -d ...
- 搭建高可用mongodb集群—— 分片
从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会出 ...
- jdbc读取数据库图片文件
package 读取大文件.read; import java.io.BufferedReader; import java.io.FileOutputStream; import java.io.I ...
- REST总结
REST是Roy Thomas Fielding博士于2000年在他的博士论文中阐述的一种架构风格和设计原则.REST并非一种协议或者标准,事实上它只是阐述了HTTP协议的设计初衷:现在HTTP在网络 ...
- S - 骨牌铺方格(第二季水)
Description 在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数. 例如n=3时,为2× 3方格,骨牌的铺放方案有三种, ...
- flask twisted 结合方案
from flask import Flask, render_template, g app = Flask(__name__) @app.route("/") def inde ...