数据结构 B树、B-树、B+树、B*概念
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
2.所有结点存储一个关键字;
3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;
如:
B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;
否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入
右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树
的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构
(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
如:
但B树在经过多次插入与删除后,有可能导致不同的结构:
右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的
树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就
是所谓的“平衡”问题;
实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树
结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的
策略;
B-树
是一种多路搜索树(并不是二叉的):
1.定义任意非叶子结点最多只有M个儿子;且M>2;
2.根结点的儿子数为[2, M];
3.除根结点以外的非叶子结点的儿子数为[M/2, M];
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1;
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的
子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8.所有叶子结点位于同一层;
如:(M=3)
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果
命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为
空,或已经是叶子结点;
B-树的特性:
1.关键字集合分布在整颗树中;
2.任何一个关键字出现且只出现在一个结点中;
3.搜索有可能在非叶子结点结束;
4.其搜索性能等价于在关键字全集内做一次二分查找;
5.自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少
利用率,其最底搜索性能为:
其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占
M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;
B+树
B+树是B-树的变体,也是一种多路搜索树:
1.其定义基本与B-树同,除了:
2.非叶子结点的子树指针与关键字个数相同;
3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树
(B-树是开区间);
5.为所有叶子结点增加一个链指针;
6.所有关键字都在叶子结点出现;
如:(M=3)
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在
非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好
是有序的;
2.不可能在非叶子结点命中;
3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储
(关键字)数据的数据层;
4.更适合文件索引系统;
B*树
是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3
(代替B+树的1/2);
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据
复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父
结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分
数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字
(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之
间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B*树分配新结点的概率比B+树要低,空间使用率更高;
小结
B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于
走右结点;
B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键
字范围的子结点;
所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点
中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率
从1/2提高到2/3;
数据结构 B树、B-树、B+树、B*概念的更多相关文章
- 数据结构图文解析之:AVL树详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- SDUT 3340 数据结构实验之二叉树一:树的同构
数据结构实验之二叉树一:树的同构 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定两棵树 ...
- COJ 0970 WZJ的数据结构(负三十)树分治
WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...
- COJ 0981 WZJ的数据结构(负十九)树综合
WZJ的数据结构(负十九) 难度级别:E: 运行时间限制:3500ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 WZJ的数据结构中有很多都是关于树的.这让很多练习 ...
- [置顶] ※数据结构※→☆非线性结构(tree)☆============树结点 链式存储结构(tree node list)(十四)
结点: 包括一个数据元素及若干个指向其它子树的分支:例如,A,B,C,D等. 在数据结构的图形表示中,对于数据集合中的每一个数据元素用中间标有元素值的方框表示,一般称之为数据结点,简称结点. 在C语言 ...
- 数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL
树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构. a.树是n ...
- 【数据结构】B-Tree, B+Tree, B*树介绍
[摘要] 最近在看Mysql的存储引擎中索引的优化,神马是索引,支持啥索引.全是浮云,目前Mysql的MyISAM和InnoDB都支持B-Tree索引,InnoDB还支持B+Tree索引,Memory ...
- 数据结构与算法(九):AVL树详细讲解
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希 ...
- Java数据结构和算法 - 什么是2-3-4树
Q1: 什么是2-3-4树? A1: 在介绍2-3-4树之前,我们先说明二叉树和多叉树的概念. 二叉树:每个节点有一个数据项,最多有两个子节点. 多叉树:(multiway tree)允许每个节点有更 ...
随机推荐
- Dreamweaver8卡死打开初始化(缓存重建)失败的解决的方法
无论是中文版的dreamweaver 8,还是英文版本号的dw8或绿色版本号的DW8,都可能出现打开时卡死无法启动的情况,这个bug的出现是由于先前你以前在使用dreamweaver 8的时候,定义了 ...
- JNI_最简单的Java调用C/C++代码
JNI_最简单的Java调用C/C++代码 JNI.是Java Native Interface的简称,中文是"Java本地调用".通过这种技术能够做到下面两点: Java程序中的 ...
- Android应用程序请求SurfaceFlinger服务创建Surface的过程分析
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/7884628 前面我们已经学习过Android应 ...
- mysql5.7 二进制包安装
1. 下载包 wget http://mirrors.sohu.com/mysql/MySQL-5.7/mysql-5.7.12-linux-glibc2.5-x86_64.tar.gz 2. 解 ...
- Java并发编程学习笔记 深入理解volatile关键字的作用
引言:以前只是看过介绍volatile的文章,对其的理解也只是停留在理论的层面上,由于最近在项目当中用到了关于并发方面的技术,所以下定决心深入研究一下java并发方面的知识.网上关于volatile的 ...
- canvas、image src、data url、blob file conversion
//canvas.toDataURL('image/jpeg'), and convert to blob,blob is a File Object. but UC don't support fu ...
- canvas模糊事件处理
不知道大家项目中有没有用到canvas时还有时候会出现模糊的情况: 具体推测可能是屏幕改变了,然而canvas的渲染对象并没有跟着一起变: 这里简单介绍个对象,window.devicePixelRa ...
- 【转】获取CID 和 LAC的方法
原文地址:http://stackoverflow.com/questions/13399659/get-cellid-mcc-mnc-lac-and-network-in-ios-5-1 在iOS5 ...
- WindowsForm 打印
打印: 打印对话框:printdialog 页面设置:pagesetupdialog 这两个对话框都需要通过设置printdocument来指定打印对象 printdocument:打印对象,必须要有 ...
- 【笔记】JS中的数组方法
push()方法:可以向数组的末尾添加一个或者多个元素,并且返回新的长度 pop()方法:可以删除数组最后一个元素,并且返回被删除的元素,注意:如果数组是空的,该方法不进行任何操作,返回undef ...