解题报告

这题建模实在是好建。,,好贱。。,

给前向星给跪了,纯dinic的前向星居然TLE,sad。,,回头看看优化,。。

矩阵跑过了。2A,sad,,,

/*************************************************************************
> File Name: PowerN.cpp
> Author: _nplus
> Mail: jun18753370216@gmail.com
> Time: 2014年07月19日 星期六 09时30分23秒
************************************************************************/ #include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
#define inf 99999999
#define N 510
#define M N*N
using namespace std;
int edge[N][N],l[N],n,m,nc,np;
int bfs()
{
queue<int >Q;
memset(l,-1,sizeof(l));
while(!Q.empty())
Q.pop();
l[n]=0;
Q.push(n);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=0; i<=n+1; i++)
{
if(edge[u][i]&&l[i]==-1)
{
l[i]=l[u]+1;
Q.push(i);
}
}
}
if(l[n+1]>0)return 1;
else return 0;
}
int dfs(int x,int f)
{
if(x==n+1)return f;
int a;
for(int i=0; i<=n+1; i++)
{
if(edge[x][i]&&(l[i]==l[x]+1)&&(a=dfs(i,min(edge[x][i],f))))
{
edge[x][i]-=a;
edge[i][x]+=a;
return a;
}
}l[x]=-1;//加上时间优化了15倍,,。sad,。,
return 0;
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d%d%d",&n,&np,&nc,&m))
{
memset(edge,0,sizeof(edge));
for(i=0; i<m; i++)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&w);
edge[u][v]=w;
}
for(i=0; i<np; i++)
{
while(getchar()!='(');
scanf("%d)%d",&v,&w);
edge[n][v]=w;
}
for(i=0; i<nc; i++)
{
while(getchar()!='(');
scanf("%d)%d",&u,&w);
edge[u][n+1]=w;
}
int a,flow=0;
while(bfs())
{
while(a=dfs(n,inf))
{
flow+=a;
}
}
printf("%d\n",flow);
}
}
写写EK算法。。。居然比我写的Dinic快,。。看来我的模板问题不少,,。sad。。,
/*************************************************************************
> File Name: PowerN.cpp
> Author: _nplus
> Mail: jun18753370216@gmail.com
> Time: 2014年07月19日 星期六 09时30分23秒
************************************************************************/ #include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
#define inf 99999999
#define N 510
#define M N*N
using namespace std;
int edge[N][N],pre[N],a[N],n,m,nc,np,flow;
void ek()
{
while(1)
{
queue<int >Q;
Q.push(n);
memset(pre,-1,sizeof(pre));
memset(a,0,sizeof(a));
a[n]=inf;
pre[n]=n;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=0;v<=n+1;v++)
{
if(edge[u][v]&&!a[v])
{
pre[v]=u;
a[v]=min(a[u],edge[u][v]);
Q.push(v);
}
}
if(a[n+1])break;
}
if(!a[n+1])break;
for(int u=n+1;u!=n;u=pre[u])
{
edge[pre[u]][u]-=a[n+1];
edge[u][pre[u]]+=a[n+1];
}
flow+=a[n+1];
}
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d%d%d",&n,&np,&nc,&m))
{
memset(edge,0,sizeof(edge));
for(i=0; i<m; i++)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&w);
edge[u][v]=w;
}
for(i=0; i<np; i++)
{
while(getchar()!='(');
scanf("%d)%d",&v,&w);
edge[n][v]=w;
}
for(i=0; i<nc; i++)
{
while(getchar()!='(');
scanf("%d)%d",&u,&w);
edge[u][n+1]=w;
}
int a;
flow=0;
ek();
printf("%d\n",flow);
}
}

Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 22571   Accepted: 11819

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount
0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power
transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of
Con. 




An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y.
The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets
(u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set
ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can
occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second
data set encodes the network from figure 1.

Source

POJ训练计划1459_Power Network(网络流最大流/Dinic)的更多相关文章

  1. POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 D ...

  2. [讲解]网络流最大流dinic算法

    网络流最大流算法dinic ps:本文章不适合萌新,我写这个主要是为了复习一些细节,概念介绍比较模糊,建议多刷题去理解 例题:codevs草地排水,方格取数 [抒情一下] 虽然老师说这个多半不考,但是 ...

  3. Power Network(网络流最大流 & dinic算法 + 优化)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24019   Accepted: 12540 D ...

  4. POJ 1459 Power Network(网络最大流,dinic算法模板题)

    题意:给出n,np,nc,m,n为节点数,np为发电站数,nc为用电厂数,m为边的个数.      接下来给出m个数据(u,v)z,表示w(u,v)允许传输的最大电力为z:np个数据(u)z,表示发电 ...

  5. POJ 1459 &amp;&amp; ZOJ 1734--Power Network【最大流dinic】

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25108   Accepted: 13077 D ...

  6. POJ 3469.Dual Core CPU 最大流dinic算法模板

    Dual Core CPU Time Limit: 15000MS   Memory Limit: 131072K Total Submissions: 24830   Accepted: 10756 ...

  7. 网络流最大流——dinic算法

    前言 网络流问题是一个很深奥的问题,对应也有许多很优秀的算法.但是本文只会讲述dinic算法 最近写了好多网络流的题目,想想看还是写一篇来总结一下网络流和dinic算法以免以后自己忘了... 网络流问 ...

  8. poj 1273 Drainage Ditches (网络流 最大流)

    网络流模板题. ============================================================================================ ...

  9. POJ1459 Power Network 网络流 最大流

    原文链接http://www.cnblogs.com/zhouzhendong/p/8326021.html 题目传送门 - POJ1459 题意概括 多组数据. 对于每一组数据,首先一个数n,表示有 ...

随机推荐

  1. vb socket的使用

    说明:原本在 csdn 博客 写博客的,因为使用的移动宽带,csdn的 博客无法访问,所以先暂时到博客园写博客了 有能解决移动宽带 有部分网站不能访问的问题,请联系我,QQ 809775607 /** ...

  2. spring常量值注入

    <context:property-placeholder location="classpath:resources/*.properties" /> @Value( ...

  3. eclipse 打开文件目录

    用简单的配置方式 eclipse打开当前文件所在文件夹的插件 Run-->External Tools-->External Tools Configurations... new 一个 ...

  4. Jimmy Choo_百度百科

    Jimmy Choo_百度百科 Jimmy Choo

  5. Saiku图表导出时中文显示问题的解决方法

    Saiku图表导出时png,jpg,pdf三种格式的中文显示都有问题,目前找到一种不太完善的解决方法(中文可以显示但不清晰),需要修改Saiku项目下的ExporterResource.java文件, ...

  6. 如何显示Mac OS X上的隐藏文件和文件夹

    显示隐藏文件以及文件夹命令: defaults write com.apple.finder AppleShowAllFiles YES Mac显示隐藏文件 对于OS X Mavericks 10.9 ...

  7. Windows7中搭建Android x86_64及armv8-a操作步骤

    1.        从https://developer.android.com/tools/sdk/ndk/index.html 下载android-ndk-r10d-windows-x86_64. ...

  8. iOS深入学习 (Block全面分析)

    本文翻译自苹果的文档,有删减,也有添加自己的理解部分. 如果有Block语法不懂的,可以参考fuckingblocksyntax,里面对于Block 为了方便对比,下面的代码我假设是写在ViewCon ...

  9. 关于ECMAScript6一些知识

    ECMAScript 是当前 JavaScript 语言规范的最新标准,一般称为 es6, 但是因为 该标准规范是在 2015年6月份发布的,所以也叫作 ECMAScript 2015 let 变量声 ...

  10. poj2311

    博弈论——sg,mex sg性质:1.在末态的状态点为N态. 2.P态的下一步有一个是N态 3.N态的下一步全部是P态. 当然这是对于单点一个游戏的情形,也相当于NIM只有一堆石子. mex(mini ...