There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:

(1) Every node is either red or black.

(2) The root is black.

(3) Every leaf (NULL) is black.

(4) If a node is red, then both its children are black.

(5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.

Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (<=30) which is the total number of cases. For each case, the first line gives a positive integer N (<=30), the
total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space.
The sample input cases correspond to the trees shown in Figure 1, 2 and 3.

Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.

Sample Input:

3

9

7 -2 1 5 -4 -11 8 14 -15

9

11 -2 1 -7 5 -4 8 14 -15

8

10 -7 5 -6 8 15 -11 17


Sample Output:

Yes

No

No

题目大意:这道题要求判断给出的树是不是红黑树,用节点值加负号的方式表示红色节点。其中红黑树需要满足三个主要条件:(1)根节点是黑色 (2)红色节点的子节点均为黑色节点(包括NULL) (3) 所有从根节点到叶子节点的路径上经过的黑色节点数目相同。

主要思路:题目考查的其实与红黑树关系不大,主要是二叉查找树的建立和遍历。首先根据给出的一系列节点创建二叉树,这里用到的是最基本的性质,左子树节点的值小于根节点的值且小于右子树节点的值,利用递归的方法将给出的节点插入树中。创建好之后,再利用递归的先序遍历对以上要求一一判断即可完成。

#include <iostream>
#include <cstdlib>
#include <cmath>
using namespace std; typedef struct node {
int val;
struct node * left;
struct node * right;
} Node;
Node * root; //根节点
int num_black; //黑色节点数量
bool is_red_black; //是否是红黑树 //动态分配新的节点
Node * new_node(int val) {
Node * p = (Node *) malloc(sizeof(Node));
p->val = val;
p->left = NULL;
p->right = NULL;
return p;
} //添加节点
Node * add_node(Node * node, int val) {
if (node == NULL) return new_node(val);
if (abs(val) < abs(node->val))
node->left = add_node(node->left, val);
else
node->right = add_node(node->right, val);
return node;
}
void add(int val) {
root = add_node(root, val);
} //先序遍历
void travel(Node * node, int num) {
if (!is_red_black) return; //如果已经发现不是红黑树,停止后面的递归
if (node == NULL) { //遍历到NULL以后,判断路径中的黑色节点数是否与之前一致
if (num_black == 0)
num_black = num;
else if (num_black != num)
is_red_black = false;
return;
}
if (node->val < 0) { //红色节点:子节点必须为黑色节点(或NULL)
if ((node->left != NULL && node->left->val < 0) || (node->right != NULL && node->right->val < 0))
is_red_black = false;
}
else //黑色节点:计数+1
num++;
travel(node->left, num);
travel(node->right, num);
} int main(void) {
int k, n, i, j; cin >> k;
for (i = 0; i < k; i++) {
root = NULL;
num_black = 0;
is_red_black = true; cin >> n;
//创建二叉树
for (j = 0; j < n; j++) {
int v;
cin >> v;
add(v);
}
if (root->val < 0) //红黑树根节点为黑色
is_red_black = false;
travel(root, 0);
if (is_red_black)
printf("Yes\n");
else
printf("No\n");
} return 0;
}

PAT-1135 Is It A Red-Black Tree(二叉查找树的创建和遍历)的更多相关文章

  1. PAT A1135 Is It A Red Black Tree

    判断一棵树是否是红黑树,按题给条件建树,dfs判断即可~ #include<bits/stdc++.h> using namespace std; ; struct node { int ...

  2. PAT甲级|1151 LCA in a Binary Tree 先序中序遍历建树 lca

    给定先序中序遍历的序列,可以确定一颗唯一的树 先序遍历第一个遍历到的是根,中序遍历确定左右子树 查结点a和结点b的最近公共祖先,简单lca思路: 1.如果a和b分别在当前根的左右子树,当前的根就是最近 ...

  3. PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  4. 【PAT甲级】1102 Invert a Binary Tree (25 分)(层次遍历和中序遍历)

    题意: 输入一个正整数N(<=10),接着输入0~N-1每个结点的左右儿子结点,输出这颗二叉树的反转的层次遍历和中序遍历. AAAAAccepted code: #define HAVE_STR ...

  5. [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现

    转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...

  6. Red–black tree ---reference wiki

    source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...

  7. Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树

    小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...

  8. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  9. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

随机推荐

  1. Maven Wrapper简介

    文章目录 简介 Maven Wrapper的结构 下载Maven Wrapper 使用 Maven Wrapper简介 简介 开发java项目少不了要用到maven或者gradle,对比gradle而 ...

  2. Cacti nagios zabbix 的区别

    Cacti nagios zabbix 的区别 首先 Cacti 是一个用 rrdtool 来画图的网络监控系统, 通常一说到网络管理, 大家首先想到的经常是 mrtg, 但是 mrtg 画的图比较简 ...

  3. 徐州赛区网络预赛 D Easy Math

    比赛快结束的适合看了一下D题,发现跟前几天刚刚做过的HDU 5728 PowMod几乎一模一样,当时特兴奋,结果一直到比赛结束都一直WA.回来仔细一琢磨才发现,PowMod这道题保证了n不含平方因子, ...

  4. 【ubuntu】windows+ubuntu 设置windows为第一启动项

    进入ubuntu系统 sudo su vim /etc/default/grub 更改GRUB_DEFAULT=后的值默认是0,如果你的windows启动项在第5个就改成4.改完之后退出保存输入 up ...

  5. linux 之学习路线

    原文地址:https://www.oschina.net/question/587367_156024 推荐的发行版如下: UBUNTU 适合纯菜鸟,追求稳定的官方支持,对系统稳定性要求较弱,喜欢最新 ...

  6. SpringCloud系列之集成Dubbo应用篇

    目录 前言 项目版本 项目说明 集成Dubbo 2.6.x 新项目模块 老项目模块 集成Dubbo 2.7.x 新项目模块 老项目模块 参考资料 系列文章 前言 SpringCloud系列开篇文章就说 ...

  7. Linux系统目录结构:目录层次标准、常用目录和文件

    1. 目录层次标准FHS FHS(Filesystem Hierarchy Standard)目录层次标准,是Linux的目录规范标准.   FHS定义了两层规范: 第一层:是"/" ...

  8. 【ejabberd】安装XMPP服务器ejabberd(Ubuntu 12.04)

    ejabberd ejabberd is a free and open source instant messaging server written in Erlang/OTP. ejabberd ...

  9. Vue项目中设置每个单页面的标题

    两种实现方法,第一种方法引入插件,第二种为编程方式实现(推荐) 首先在路由文件index.js中给每个单页面路由添加title routes: [{     path: '/',     name: ...

  10. 数据结构--栈(附上STL栈)

    定义: 栈是一种只能在某一端插入和删除数据的特殊线性表.他按照先进先出的原则存储数据,先进的数据被压入栈底,最后进入的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后被压入栈的,最先弹出).因此栈 ...