转载

https://www.oyohyee.com/post/HDU/5984.html

hdu5984概率数学的更多相关文章

  1. best coder #35-01<组合数学 || 概率数学>

    问题描述 一个盒子里有n个黑球和m个白球.现在DZY每次随机从盒子里取走一个球,取了n+m次后,刚好取完.DZY用这种奇怪的方法生成了一个随机的01串S[1⋯(n+m)].如果DZY第i次取出的球是黑 ...

  2. 2019暑期集训第二讲 - 组合数学&概率&数学期望

    A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合 ...

  3. One Person Game(概率+数学)

    There is a very simple and interesting one-person game. You have 3 dice, namelyDie1, Die2 and Die3.  ...

  4. Gym - 101987G Secret Code (概率+数学积分)

    题意:有A,B,C三个人要见面,每个人在[0,S]随机选择一个时间点作为见面时间,先到的那个人要等下一个人来了之后和他确认信息,然后马上就走. 例如,假如A先到,B其次,C最后到,那么A要等B到了之后 ...

  5. 概率专题_概率/ 数学_基础题_ABEI

    上周三讲了概率和概率dp.如果没有涉及其他综合算法,概率这种题主要是思维,先把这部分的东西写完 给个题目链接:https://vjudge.net/contest/365300#problem Hea ...

  6. 算法讲堂二:组合数学 & 概率期望DP

    组合数学 1. 排列组合 1. 加法原理 完成一列事的方法有 n 类,其中第 i 类方法包括\(a_i\)种不同的方法,且这些方法互不重合,则完成这件事共有 \(a_1 + a_2 + \cdots ...

  7. ACM知识点

    基础算法 高精 模拟 分治 贪心 排序 DFS 迭代加深搜索 BFS 双向BFS 动态规划 DAG上DP 树上DP 线性DP 图算法 最短路 FLYD DJATL BF 最大流 Dinic ISAP ...

  8. 3D打印:三维智能数字化创造(全彩)

    3D打印:三维智能数字化创造(全彩)(全球第一本系统阐述3D打印与3D智能数字化的专业著作) 吴怀宇 编   ISBN 978-7-121-22063-0 2014年1月出版 定价:99.00元 42 ...

  9. breeze源码阅读心得

            在阅读Spark ML源码的过程中,发现很多机器学习中的优化问题,都是直接调用breeze库解决的,因此拿来breeze源码想一探究竟.整体来看,breeze是一个用scala实现的基 ...

随机推荐

  1. weblogic创建域

    一.webLogic服务域创建 https://blog.csdn.net/github_38922197/article/details/75097320

  2. 第三方库PyYAML

    建议参考PyYAML Documentation来源:http://pyyaml.org/wiki/PyYAMLDocumentation:http://blog.csdn.net/conquer07 ...

  3. composer+psr-4实现自动加载

    自动加载 对于库的自动加载信息,Composer 生成了一个 vendor/autoload.php 文件.你可以简单的引入这个文件,你会得到一个免费的自动加载支持. require 'vendor/ ...

  4. log4j 详细解释

    2019独角兽企业重金招聘Python工程师标准>>> 虽然说log4j自己会用,但是还是觉得对配置文件还不是很熟悉,最近看了一个博客,感觉很不多,我提炼出自己的理解. 地址 案例我 ...

  5. Java 数组 之 二维数组

    转载于 : http://www.verejava.com/?id=16992693216433 public class BinaryArray { public static void main( ...

  6. #Week3 Linear Regression with Multiple Variables

    一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训 ...

  7. 图论--SCC强连通缩点--Tarjan

    强连通缩点与双连通缩点大同小异,也就是说将强连通分支缩成一个点之后,没有强连通,成为有向无环图,在对图进行题目的操作. // Tarjan算法求有向图强连通分量并缩点 #include<iost ...

  8. LeetCode 56,57,60,连刷三题不费劲

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题的第34篇文章,刚好接下来的题目比较简单,很多和之前的做法类似.所以我们今天出一个合集,一口气做完接下来的57.5 ...

  9. HTTP请求头中的X-Forwarded-For介绍

    概述 我们在做nginx方向代理的时候,为了记录整个代理过程,我们往往会在配置文件中加上如下配置: location ^~ /app/download/ { ... proxy_set_header ...

  10. 《Docker从入门到跑路》之基本用法介绍

    Docker是一种轻量级的虚拟化技术,它具备传统虚拟机无法比拟的优势,它更简易的安装和使用方式.更快的速度.服务集成和开源流程自动化. Docker的安装 安装Docker的基本要素:1.Docker ...