Clifford code

Clifford group是什么?

简单的公式来表达,就是 \(Cl_{n}=\left\{U: U P_{n} U^{\dagger} \in P_{n}\right\}\) 。

用语言来描述,就是对一个泡利施加一个U操作,然后还是一个泡利。

首先,所有的泡利都属于\(Cl_n\),因为泡利矩阵自己相乘还是泡利。

但也有非泡利的矩阵在这里面,比如H也属于clifford,\(HXH=Z\),$ HZH=X$

另一个例子是 \(S=\sqrt{Z}=\left(\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right)\)

\(SZS^{\dagger}=ZSS^{\dagger}=Z\)

\(SXS^{\dagger}=iY\)

但是也并非所有的操作都属于\(Cl_n\),比如T门,\(TZT^{\dagger}=ZTT^{\dagger}=ZS \notin P\)

对于单量子比特来说:\(Cl_1=\langle X,Z,H,S\rangle\)

但是我们不仅只有单比特,对于多比特,他不是简单的\(Cl_1^{\otimes n}\) ,因为多比特有纠缠。

比如\(SWAP_{ij}\) ,将第i个和第j个交换一下,这很明显操作完了还是一个泡利,属于\(Cl_n\),\(\operatorname{SWAP}_{i j} X_{i} \operatorname{SWAP}_{i j}^{\dagger}=X_{j}\)

除此之外还有CNOT,CNOT对于原来的泡利在受控比特和控制比特上有所不一样,对X和Z的影响也不一样,其效果如下表:

事实上,我们可以用3个CNOT来构建一个SWAP

所以 \(C l_{n}=\langle H_{i},S_{j},CNOT_{i j}\rangle\)

Clifford group可以做什么?

ok,我们已经知道Clifford的定义了,但是我们为什么要定义一个Clifford group呢?他有什么用?

5 qubit code

定义一组对应五比特编码的stabilizer,\(S=\langle Z X X Z I, I Z X X Z, Z I Z X X, X Z I Z X\rangle\),我们可以很容易的给她加上最后一位变成\(S=\langle Z X X Z I, I Z X X Z, Z I Z X X, X Z I Z X, X X Z I Z\rangle\),多出来的这个就是前面4个的乘积,所以不会影响到最后的结果。

接下来,我们定义 normalizers of S ,也就是\(N(S)\)。

对于\(N(S)\),我们只有一个要求,那就是\(N(S)=\left\{p \in P_{n} | p S p^{\dagger}=S\right\}\)。

对于\(p S p^{\dagger}=S\),我们可以换一种理解方式,即\(pg=gp \forall g \in S\)。

trivial code

我们都知道,编码其实就是将低维的空间映射到高维,那么最为朴实的一种映射就是补零操作,\(V_{S} \in\left\{|0\rangle^{\otimes n-k} \otimes|\Psi\rangle:|\Psi\rangle \in \mathbb{C}^{2^{k}}\right\}\),这就是一个简单的把k比特映射到n比特空间的一种trival code。

这种编码的stabilizer很简单,\(S=\left\langle Z_{1}, Z_{2} \dots . Z_{n-k}\right\rangle\),\(Z_i\)的意思是除了第i个比特是Z其他都是I,这个很好理解,因为前面n-k个比特我们都是\(|0\rangle\),是Z的特征向量。

那这两个编码之间有什么关系吗?

我们可以给出以下声明:

对于任意的stabilizer code,都可以通过unitary的转化和trivial code等价。

而这个unitary就属于我们的Clifford group。

假设我有一组stabilizer \(S\),以及这个\(S\)对应的子空间\(V_S\),那么一定存在一个unitary U 使得 \(USU^{\dagger}=\left\langle Z_{1}, Z_{2} \dots . Z_{n-k}\right\rangle\)

这个时候,我们的子空间\(V_{S}\)就变成了\(V_{USU^{\dagger}}\)

后一句话很好理解,原来这个子空间里的向量为\(|\psi\rangle\),现在这个子空间里的每一个向量就变成了\(U|\psi\rangle\)

\((USU^{\dagger})U|\psi\rangle=US|\psi\rangle=U|\psi\rangle\)

那么前一个为什么会存在这个U呢?

先来论证一下他的可能性,U会改变一些东西,但是有一些不会改变,比如,他不会改变这个的特征值,而正好,他们都是泡利矩阵,特征值都是正负1;又比如,U不会改变他们的对易和反对易,他们正好都是对易的操作。

事实上,对于泡利矩阵来说,只要他们的对易反对易的模式相同,那么我就可以用U对他们进行一个映射。

我们可以换一个视角从向量的角度来看一看这个问题

令\(a,b \in \mathbb{F}^n\),那么\(v=\left(\begin{array}{l}a \\ b\end{array}\right) \in F^{2 n}\)

任意一个Pauli都可以用v来表示\(X^{a} Z^{b}=\sigma^{\left(\begin{array}{c}a \\ b\end{array}\right)}\)

那么Clifford group在做什么?

$U\sigmavU{\dagger} \in P_n $

即,其实就是把\(\sigma^{v_1}\)映射成$\sigma^{v_2} $

\(U\sigma^{v}U^{\dagger}=(-1)^{f(v)}\sigma^{g(v)}\)

我们的下一步就是看这里的函数f(v)和g(v)需要满足哪些条件

这里面一个限制就是U变换不会改变操作本来的对易和反对易。

第二个等式是加上了\(U^{\dagger}U\),因为这两个乘积为\(I\)不会有影响

第三个等式是带入公式\(U\sigma^{v}U^{\dagger}=(-1)^{f(v)}\sigma^{g(v)}\)

如果这里面的\(\sigma^v\)就是我们的\(\sigma^{v_1+v_2}\),那么后面我们的到的就是\((-1)^{f(v_1+v_2)}\sigma^{g(v_1+v_2)}\)

即\(g(v_1+v_2)=g(v_1)+g(v_2)\),函数g是一个线性函数

g(v)=Mv

但是也不是所有的M是可行的。

\(\sigma^{v} \sigma^{w} \sigma^{v} \sigma^{w}=(-1)^{v^{T}\Lambda w} I\) 其中\(\lambda=\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right)\)

我们可以先把他展开:

\(U \sigma^{N} U^{\dagger}U \sigma^{W} U^{\dagger}U \sigma^{N} U^{\dagger}U\sigma^{W}U=\sigma^{Mv}\sigma^{Mw}\sigma^{Mv}\sigma^{Mw}\)

这里没有系数,因为两个一模一样的系数乘起来就是1,所以系数可以省略掉。

而如果把\(\sigma^{Mw}\sigma^{Mv}\)交换一下可以变成:

\((-1)^{(Mv)^T\Lambda Mw}I\)

我们可以得出:

\(v^T \Lambda w= v^TM^T \Lambda M w\)

即\(\Lambda=M^T \Lambda M\)

而这个就是M需要满足的条件,属于symplectic group。

量子纠错码——Clifford group的更多相关文章

  1. 量子纠错码——Stabilizer codes

    对于错误,一般有两种: random: 错误以一定的概率发生在每个比特上(对这种问题的研究一般是信息论中,信道熵一类的问题) worst case: 错误发生在某个比特上,这也是纠错码襄阳解决的问题 ...

  2. LINQ Group By操作

    在上篇文章 .NET应用程序与数据库交互的若干问题 这篇文章中,讨论了一个计算热门商圈的问题,现在在这里扩展一下,假设我们需要从两张表中统计出热门商圈,这两张表内容如下: 上表是所有政区,商圈中的餐饮 ...

  3. Kafka消费组(consumer group)

    一直以来都想写一点关于kafka consumer的东西,特别是关于新版consumer的中文资料很少.最近Kafka社区邮件组已经在讨论是否应该正式使用新版本consumer替换老版本,笔者也觉得时 ...

  4. LINQ to SQL语句(6)之Group By/Having

    适用场景:分组数据,为我们查找数据缩小范围. 说明:分配并返回对传入参数进行分组操作后的可枚举对象.分组:延迟 1.简单形式: var q = from p in db.Products group ...

  5. 学习笔记 MYSQL报错注入(count()、rand()、group by)

    首先看下常见的攻击载荷,如下: select count(*),(floor(rand(0)*2))x from table group by x; 然后对于攻击载荷进行解释, floor(rand( ...

  6. [备查]使用 SPQuery 查询 "Person or Group" 字段

    原文地址:http://www.stum.de/2008/02/06/querying-the-person-or-group-field-using-spquery/ Querying the “P ...

  7. order by 与 group by 区别

    order by 排序查询.asc升序.desc降序 示例: select * from 学生表 order by 年龄 ---查询学生表信息.按年龄的升序(默认.可缺省.从低到高)排列显示 也可以多 ...

  8. Group by

    分组语句必须和聚合函数在一起使用, group by子句负责将数据分成逻辑组,聚合函数对每一组进行统计计算 group by 必须放到 select 语句后面,如果select语句中有where子句, ...

  9. Oracle学习笔记五 SQL命令(三):Group by、排序、连接查询、子查询、分页

    GROUP BY和HAVING子句 GROUP BY子句 用于将信息划分为更小的组每一组行返回针对该组的单个结果 --统计每个部门的人数: Select count(*) from emp group ...

随机推荐

  1. CSS样式2

    1.css重用 <style> .cl{ ... } .c2{ ... } .c{ ... } </style> <div class='c c2'></di ...

  2. 《Exchange Server 2010 SP1/SP2管理实践》——第2章 搭建Exchange实验环境2.1 网络环境规划...

    本节书摘来自异步社区<Exchange Server 2010 SP1/SP2管理实践>一书中的第2章,第2.1节,作者: 王淑江 更多章节内容可以访问云栖社区"异步社区&quo ...

  3. Tomcat中的类是怎么被一步步加载的?

    了解Tomcat的类加载机制,原来一切是这么的简单. 一.类加载 在JVM中并不是一次性把所有的文件都加载到,而是一步一步的,按照需要来加载. 比如JVM启动时,会通过不同的类加载器加载不同的类.当用 ...

  4. canvas 绘图api的位置问题

    很久没碰canvas了,今天因为canvas绘图的为之问题浪费了一些时间. 我们知道canvas的默认宽高是300X150嘛. 实际使用的时候当然是自定义一个高宽啦. 通常我们会习惯性地在js中通过c ...

  5. 算法竞赛进阶指南--在单调递增序列a中查找小于等于x的数中最大的一个(即x或x的前驱)

    在单调递增序列a中查找<=x的数中最大的一个(即x或x的前驱) while (l < r) { int mid = (l + r + 1) / 2; if (a[mid] <= x) ...

  6. CodeForces - 1102A(思维题)

    https://vjudge.net/problem/2135388/origin Describe You are given an integer sequence 1,2,-,n. You ha ...

  7. 无向图求割(找桥)tarjan

    本博客参考了李煜东的<算法竞赛进阶指南>,大家要是觉得这篇文章写的不错请大家支持正版.豆瓣图书 我在之前的博客中讲解了搜索序时间戳,这次我们讲讲追溯值的概念. 追溯值: 设subtree( ...

  8. Java——Spring依赖配置详解

    <properties> <junit.version>4.12</junit.version> <spring.version>4.3.9.RELEA ...

  9. P2002 消息扩散(缩点)

    描述:https://www.luogu.com.cn/problem/P2002 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市发布消息才能 ...

  10. 网上流行护眼色的RGB值和颜色代码

    网上流行护眼色的RGB值和颜色代码   绿豆沙色能有效的减轻长时间用电脑的用眼疲劳!色调:85,饱和度:123,亮度:205: RGB颜色红:199,绿:237,蓝:204:十六进制颜色:#C7EDC ...