最近多刷些dp,觉得这个算不上蓝题

 

在一个\(n\times n\)的平面上,在每一行中有一条线段,第\(i\)行的线段的左端点是\((i, L_i)\),右端点是\((i, R_i)\),其中\(1\leq L_i \leq R_i \leq n\)。

你从\((1, 1)\)点出发,要求沿途走过所有的线段,最终到达\((n, n)\)点,且所走的路程长度要尽量短。

更具体一些说,你在任何时候只能选择向下走一步(行数增加 1)、向左走一步(列数减少 1)或是向右走一步(列数增加 1)。当然,由于你不能向上行走,因此在从任何一行向下走到另一行的时候,你必须保证已经走完本行的那条线段。

 


设计状态,每行走完都会停留在左端点或是右端点,因为不能走不完在中间就停下

所以考虑将状态设计为\(f_{i,0/1}\),表示走完了第\(i\)行,并停留在左端点/右端点

预处理出第一行的值

以每一行的\(f_{i,0}\)(走完停留在左端点)为例,因为要停留在左端点,肯定要从右端点开始走

如果上一行是停留在右端点,则走到右端点的代价为\(\text{abs}(R_{i-1}-R_i)+1+f_{i-1,1}\)

同样,上一行停留在左端点,走到这一行右端点的代价为\(\text{abs}(L_{i-1}-R_i)+1+f_{i-1,0}\)

让后当然还要再加上这一行线段的长度

每行的\(f_{i,1}\)也是同理

答案显然是\(\min(f_{n,0}+(n-L_n),f_{n,1}+(n-R_n))\),别忘了最后还要走到\((n,n)\)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
LL f[20006][2];
LL l[20006],r[20006];
int main(){
n=read();
for(reg int i=1;i<=n;i++) l[i]=read(),r[i]=read();
f[1][0]=r[1]-1+(r[1]-l[1]);f[1][1]=r[1]-1;
for(reg int i=2;i<=n;i++){
f[i][0]=std::min(f[i-1][0]+std::abs(l[i-1]-r[i])+(r[i]-l[i]),
f[i-1][1]+std::abs(r[i-1]-r[i])+(r[i]-l[i]))+1;
f[i][1]=std::min(f[i-1][0]+std::abs(l[i-1]-l[i])+(r[i]-l[i]),
f[i-1][1]+std::abs(r[i-1]-l[i])+(r[i]-l[i]))+1;
}
std::printf("%lld",std::min(f[n][0]+n-l[n],f[n][1]+n-r[n]));
return 0;
}

P3842 [TJOI2007]线段的更多相关文章

  1. luogu [TJOI2007]线段

    题目链接 luogu [TJOI2007]线段 题解 dp[i][0/1]第i行在左/右端点的最短路 瞎转移 代码 #include<bits/stdc++.h> using namesp ...

  2. 【洛谷 P3842】[TJOI2007]线段(DP)

    裸DP.感觉楼下的好复杂,我来补充一个易懂的题解. f[i][0]表示走完第i行且停在第i行的左端点最少用的步数 f[i][1]同理,停在右端点的最少步数. 那么转移就很简单了,走完当前行且停到左端点 ...

  3. [TJOI2007] 线段

    因为每行必须走完才能到下一行,所以我们有两种决策: 1.最后留在线段左端点 2.最后留在线段右端点 这种存在状态转移且多决策的问题用动态规划来进行递推是最好不过的了. 所以我们设\(dp[i][0/1 ...

  4. [TJOI2007] 线段 (动态规划)

    题目链接 Solution 传统的线性 \(dp\) . \(f[i][0]\),\(f[i][1]\) 分别表示最后一次在 \(i\) ,然后在 左边或者右边的最小步数. 然后就每次根据上一次左边和 ...

  5. DP擎天

    DP! 黄题: 洛谷P2101 命运石之门的选择 假装是DP(分治 + ST表) CF 982C Cut 'em all! 树形贪心 洛谷P1020 导弹拦截 单调队列水题 绿题: 洛谷P1594 护 ...

  6. NOIpDairy

    Day 0 水水比赛 Day 1 写写Dp Part1:Dp基础练习 [HNOI2002]公交车路线 秒切,点数这么少,N这么大,目测O(N)+暴力更新 5min写完 P3842 [TJOI2007] ...

  7. NOIP前刷题记录

    因为本蒻实在太蒻了...对于即将到来的NOIP2018ssfd,所以下决心要把自己近期做过的题目(衡量标准为洛谷蓝题难度或以上)整理一下,归归类,简单地写一下思路,就当作自己复习了吧qwq 本随笔持续 ...

  8. NOIP刷题

    搜索 [NOIP2013]华容道 最短路+带剪枝的搜索,是一个思维难度比较大的题目. CF1064D Labyrinth 考虑贪心,用双向队列bfs [NOIP2017]宝藏 剪枝搜索出奇迹 题解:h ...

  9. DP百题练(一)

    目录 DP百题练(一) 线性 DP 简述 Arithmetic Progressions [ZJOI2006]物流运输 LG1095 守望者的逃离 LG1103 书本整理 CH5102 移动服务 LG ...

随机推荐

  1. (js描述的)数据结构[字典](7)

    (js描述的)数据结构[字典](7) 一.字典的特点 1.字典的主要特点是一一对应关系. 2.使用字典,剋通过key取出对应的value值. 3.字典中的key是不允许重复的,而value值是可以重复 ...

  2. 让 .NET 轻松构建中间件模式代码

    让 .NET 轻松构建中间件模式代码 Intro 在 asp.net core 中中间件的设计令人叹为观止,如此高大上的设计何不集成到自己的代码里呢. 于是就有了封装了一个简单通用的中间件模板的想法, ...

  3. search(4)- elastic4s-ElasticDsl

    上次分析了一下elastic4s的运算框架.本来计划接着开始实质的函数调用示范,不过看过了Elastic4s的所有使用说明文档后感觉还是走的快了一点.主要原因是elasticsearch在7.0后有了 ...

  4. jvm入门及理解(四)——运行时数据区(堆+方法区)

    一.堆 定义: Heap,通过new关键字创建的对象,都存放在堆内存中. 特点 线程共享,堆中的对象都存在线程安全的问题 垃圾回收,垃圾回收机制重点区域. jvm内存的划分: JVM内存划分为堆内存和 ...

  5. 关于node中两个模块相互引用却不会死循环的问题

    关于node中两个模块相互引用却不会死循环的问题 node中是通过require来导入加载模块的,require有两个作用: 1.加载文件模块并执行里面的代码 2.拿到被加载文件模块导出的接口对象 现 ...

  6. ASP.NET Core中配置监听URLs的五种方式

    原文: 5 ways to set the URLs for an ASP.NET Core app 作者: Andrew Lock 译者: Lamond Lu 默认情况下,ASP. NET Core ...

  7. 字符串的常用操作和方法(Python入门教程)

    字符串的常用操作 很好理解 字符串可以用 ' + ' 连接,或者乘一个常数重复输出字符串 字符串的索引操作 通过一对中括号可以找到字符串中的某个字符 可以通过正负数双向操作噢 用一个中括号来实现 为什 ...

  8. VXLAN 基础教程:在 Linux 上配置 VXLAN 网络

    上篇文章结尾提到 Linux 是支持 VXLAN 的,我们可以使用 Linux 搭建基于 VXLAN 的 overlay 网络,以此来加深对 VXLAN 的理解,毕竟光说不练假把式. 1. 点对点的 ...

  9. 浅析CAS与AtomicInteger原子类

    一:CAS简介 CAS:Compare And Swap(字面意思是比较与交换),JUC包中大量使用到了CAS,比如我们的atomic包下的原子类就是基于CAS来实现.区别于悲观锁synchroniz ...

  10. Java中的OOM问题

    OOM是什么 OOM全称"OutOfMemory",既内存溢出.我们知道,Java中的对象是在堆(heap)上创建的,当堆内存不足以为新创建的对象分配空间时,就会产生OutOfMe ...