例1:http://lx.lanqiao.cn/problem.page?gpid=T444

蓝桥杯
问题描述
  给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
  你能求出数列中总共有多少个K倍区间吗?
输入格式
  第一行包含两个整数N和K。(1 <= N, K <= 100000)
  以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出格式
  输出一个整数,代表K倍区间的数目。
分析:
1、因为(sum[r] - sum[l-1]) % k == 0,可推出sum[r] % k == sum[l - 1] % k.
2、因此,将前缀和分别对K取模。
3、分别统计出取模后的各数字的个数。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 100000 + 10;
int sum[MAXN];
int cnt[MAXN];
int main(){
int N, K;
scanf("%d%d", &N, &K);
for(int i = 0; i < N; ++i){
scanf("%d", &sum[i]);
}
sum[0] %= K;
for(int i = 1; i < N; ++i){
sum[i] = ((sum[i] % K) + sum[i - 1]) % K;
}
LL ans = 0;
for(int i = 0; i < N; ++i){
ans += cnt[sum[i]]++;
}
printf("%lld\n", ans + cnt[0]);
return 0;
}

例2:https://cn.vjudge.net/problem/POJ-3370

题意:每个邻居可以给ai个糖,共n个邻居,问向哪几个邻居要糖可以正好被c个孩子平分。

分析:此题和例1解法相似。

若sum[i] % c == 0,则[1, i]可以被c整除;

若sum[l - 1] % c == sum[r] % c,则[l, r]可以被c整除;

由于输出任意一种答案即可,那会不会存在一种可能,就是答案都不是连续的区间,而是不连续的区间呢?

由于本题中c<=n,因此一定存在连续区间的解。

原因在于,

若sum[i]能被c整除,一定存在连续区间的解[1, i];

若sum[i]不能被c整除,则sum[i]%c可能的结果在[1, c-1]里,共c-1种可能,而c-1<n,根据抽屉原理,因此一定存在一对i, j,使得sum[i] % c == sum[j] % c,即存在连续区间解[i + 1, j].

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN = 100000 + 10;
int sum[MAXN];
int id[MAXN];
int main(){
int c, n;
while(scanf("%d%d", &c, &n) == 2){
if(!c && !n) return 0;
memset(sum, 0, sizeof sum);
memset(id, 0, sizeof id);
for(int i = 1; i <= n; ++i){
scanf("%d", &sum[i]);
}
sum[1] %= c;
for(int i = 2; i <= n; ++i){
sum[i] = ((sum[i] % c) + sum[i - 1]) % c;
}
int st, et;
for(int i = 1; i <= n; ++i){
if(sum[i] == 0){
st = 1;
et = i;
break;
}
if(id[sum[i]]){
st = id[sum[i]] + 1;
et = i;
break;
}
id[sum[i]] = i;
}
for(int i = st; i <= et; ++i){
printf("%d", i);
if(i == et) printf("\n");
else printf(" ");
}
}
return 0;
}

例3:https://cn.vjudge.net/problem/POJ-2356

分析:与例2相似,因为N-1 < N,所以一定存在连续区间的解。

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN = 15000 + 10;
int a[MAXN];
int sum[MAXN];
int id[MAXN];
int main(){
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i){
scanf("%d", &a[i]);
}
sum[1] = a[1] % n;
for(int i = 2; i <= n; ++i){
sum[i] = ((a[i] % n) + sum[i - 1]) % n;
}
int st, et;
for(int i = 1; i <= n; ++i){
if(sum[i] == 0){
st = 1;
et = i;
break;
}
if(id[sum[i]]){
st = id[sum[i]] + 1;
et = i;
break;
}
id[sum[i]] = i;
}
printf("%d\n", et - st + 1);
for(int i = st; i <= et; ++i){
printf("%d\n", a[i]);
}
return 0;
}

  

【题集】k倍区间(抽屉原理)的更多相关文章

  1. 2017蓝桥杯第十题(k倍区间)

    #include<iostream> #include<stdio.h> using namespace std; ; ],a[N]; int lowbit(int n){ r ...

  2. 第八届蓝桥杯省赛 K倍区间

    问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...

  3. 蓝桥杯-k倍区间

    http://lx.lanqiao.cn/problem.page?gpid=T444 问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, .. ...

  4. k倍区间:前缀和

    [蓝桥杯][2017年第八届真题]k倍区间 题目描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数 ...

  5. k倍区间(解题报告)前缀和简单应用

    测评地址 问题 1882: [蓝桥杯][2017年第八届真题]k倍区间 时间限制: 1Sec 内存限制: 128MB 提交: 351 解决: 78 题目描述 给定一个长度为N的数列,A1, A2, . ...

  6. 2017第八届蓝桥杯 K倍区间

    标题: k倍区间 给定一个长度为N的数列,A1, A2, - AN,如果其中一段连续的子序列Ai, Ai+1, - Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...

  7. 蓝桥杯试题 k倍区间(dp)

    问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...

  8. k倍区间

    看大佬的代码看了半天,终于算是懂了 标题: k倍区间 给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就 ...

  9. k倍区间 前缀和【蓝桥杯2017 C/C++ B组】

    标题: k倍区间 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍 ...

随机推荐

  1. QRious入门

    qrious是一款基于HTML5 Canvas的纯JS二维码生成插件.通过qrious.js可以快速生成各种二维码,你可以控制二维码的尺寸颜色,还可以将生成的二维码进行Base64编码. qrious ...

  2. apache、mysql、php核心、phpmyadmin的安装及相互关联

    1.apache的安装 https://blog.csdn.net/ashendove/article/details/52206198 里面的serverName  就是你在服务中 设置的apach ...

  3. 同一条sql insert 有时快有时慢 引发的血案

    同一条sql语句,为什么有时插入块,有时插入慢原因剖析 背景:同一条sql ,有时插入时间几毫秒,有时插入时间几十毫秒,为什么? Sql角度:简单insert 表角度: 一个主键 系统参数角度: 开启 ...

  4. 【协作式原创】查漏补缺之Golang中mutex源码实现(预备知识)

    预备知识 CAS机制 1. 是什么 参考附录3 CAS 是项乐观锁技术,当多个线程尝试使用 CAS 同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是 ...

  5. leetcode刷题-- 5. 动态规划

    动态规划思路 参考 状态转移方程: 明确「状态」-> 定义dp数组/函数的含义 -> 明确「选择」-> 明确 base case 试题 53最大子序和 题目描述 53 给定一个整数数 ...

  6. 夯实Java基础(二十四)——Java8新特征之Optional类

    1.概述 对于Java程序员来说,到目前为止出现次数最多的应该是NullpointException,它是导致Java应用程序失败的最常见原因.之前处理空指针我们必须先通过条件先去判断,然后再确认是否 ...

  7. Java源码-集合-ArrayList

    基于JDK1.8.0_191 介绍   在Java中,对于数据的保存和使用有多种方式,主要的目的是以更少的资源消耗解决更多的问题,数组就是其中的一种,它的特点是所有的数据都保存在内存的一段连续空间中, ...

  8. 三、linux基础-常用命令man_cd_|_find_ln_>_history

    3通用命令3.1 man命令man pwd      来查看该命令的全部帮助手册备注:命令最终是在内核中执行的,但是内核并无法直接识别,所以先通过shell执行,然后再交给内核执行3.2 cd 命令c ...

  9. H5中input输入框tppe为date时赋值(回显)

    1.当时间为2013-09-05时正常显示 <input class="form-control" name="applytime" type=" ...

  10. Ideone:在线多语言编程执行器工具

    Ideone:在线多语言编程执行器工具此网站提供40种编程语言以上, 能在线直接做编译和执行的动作,该工具是一款简易的编程测试工具,虽然不能替代专业版的工具,但是其功能非常全面. Ideone,一款在 ...