【题集】k倍区间(抽屉原理)
例1:http://lx.lanqiao.cn/problem.page?gpid=T444
你能求出数列中总共有多少个K倍区间吗?
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 100000 + 10;
int sum[MAXN];
int cnt[MAXN];
int main(){
int N, K;
scanf("%d%d", &N, &K);
for(int i = 0; i < N; ++i){
scanf("%d", &sum[i]);
}
sum[0] %= K;
for(int i = 1; i < N; ++i){
sum[i] = ((sum[i] % K) + sum[i - 1]) % K;
}
LL ans = 0;
for(int i = 0; i < N; ++i){
ans += cnt[sum[i]]++;
}
printf("%lld\n", ans + cnt[0]);
return 0;
}
例2:https://cn.vjudge.net/problem/POJ-3370
题意:每个邻居可以给ai个糖,共n个邻居,问向哪几个邻居要糖可以正好被c个孩子平分。
分析:此题和例1解法相似。
若sum[i] % c == 0,则[1, i]可以被c整除;
若sum[l - 1] % c == sum[r] % c,则[l, r]可以被c整除;
由于输出任意一种答案即可,那会不会存在一种可能,就是答案都不是连续的区间,而是不连续的区间呢?
由于本题中c<=n,因此一定存在连续区间的解。
原因在于,
若sum[i]能被c整除,一定存在连续区间的解[1, i];
若sum[i]不能被c整除,则sum[i]%c可能的结果在[1, c-1]里,共c-1种可能,而c-1<n,根据抽屉原理,因此一定存在一对i, j,使得sum[i] % c == sum[j] % c,即存在连续区间解[i + 1, j].
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN = 100000 + 10;
int sum[MAXN];
int id[MAXN];
int main(){
int c, n;
while(scanf("%d%d", &c, &n) == 2){
if(!c && !n) return 0;
memset(sum, 0, sizeof sum);
memset(id, 0, sizeof id);
for(int i = 1; i <= n; ++i){
scanf("%d", &sum[i]);
}
sum[1] %= c;
for(int i = 2; i <= n; ++i){
sum[i] = ((sum[i] % c) + sum[i - 1]) % c;
}
int st, et;
for(int i = 1; i <= n; ++i){
if(sum[i] == 0){
st = 1;
et = i;
break;
}
if(id[sum[i]]){
st = id[sum[i]] + 1;
et = i;
break;
}
id[sum[i]] = i;
}
for(int i = st; i <= et; ++i){
printf("%d", i);
if(i == et) printf("\n");
else printf(" ");
}
}
return 0;
}
例3:https://cn.vjudge.net/problem/POJ-2356
分析:与例2相似,因为N-1 < N,所以一定存在连续区间的解。
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN = 15000 + 10;
int a[MAXN];
int sum[MAXN];
int id[MAXN];
int main(){
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i){
scanf("%d", &a[i]);
}
sum[1] = a[1] % n;
for(int i = 2; i <= n; ++i){
sum[i] = ((a[i] % n) + sum[i - 1]) % n;
}
int st, et;
for(int i = 1; i <= n; ++i){
if(sum[i] == 0){
st = 1;
et = i;
break;
}
if(id[sum[i]]){
st = id[sum[i]] + 1;
et = i;
break;
}
id[sum[i]] = i;
}
printf("%d\n", et - st + 1);
for(int i = st; i <= et; ++i){
printf("%d\n", a[i]);
}
return 0;
}
【题集】k倍区间(抽屉原理)的更多相关文章
- 2017蓝桥杯第十题(k倍区间)
#include<iostream> #include<stdio.h> using namespace std; ; ],a[N]; int lowbit(int n){ r ...
- 第八届蓝桥杯省赛 K倍区间
问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- 蓝桥杯-k倍区间
http://lx.lanqiao.cn/problem.page?gpid=T444 问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, .. ...
- k倍区间:前缀和
[蓝桥杯][2017年第八届真题]k倍区间 题目描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数 ...
- k倍区间(解题报告)前缀和简单应用
测评地址 问题 1882: [蓝桥杯][2017年第八届真题]k倍区间 时间限制: 1Sec 内存限制: 128MB 提交: 351 解决: 78 题目描述 给定一个长度为N的数列,A1, A2, . ...
- 2017第八届蓝桥杯 K倍区间
标题: k倍区间 给定一个长度为N的数列,A1, A2, - AN,如果其中一段连续的子序列Ai, Ai+1, - Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- 蓝桥杯试题 k倍区间(dp)
问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- k倍区间
看大佬的代码看了半天,终于算是懂了 标题: k倍区间 给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就 ...
- k倍区间 前缀和【蓝桥杯2017 C/C++ B组】
标题: k倍区间 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍 ...
随机推荐
- 洛谷 P1339 [USACO09OCT]热浪Heat Wave(最短路)
嗯... 题目链接:https://www.luogu.org/problem/P1339 这道题是水的不能在水的裸最短路问题...这里用的dijkstra 但是自己进了一个坑—— 因为有些城市之间可 ...
- Python之字符
关于字符的常用操作:(字符为不可变长度的类型,故不能“增”.“删”等改变长度的操作) 1.改:改变字符串中的某个值.但为浅改变: name = "Python3.5" print( ...
- python - 关于json和pickle两个序列化模块的区别
传送门 https://stackoverflow.com/a/20980488/5955399 区别 json:用于字符串(unicode text)和python基本数据类型间进行转换.优点:跨语 ...
- HTML常用标签效果展示
HTML常用标签效果展示 一.文本效果 段落1---收到了开发建设看来得更加快乐圣诞节福利肯定是减肥的路上苏里科夫就是打开了飞机都是风口浪尖上的疯狂了大煞风景圣诞快乐的索科洛夫几点上课了关键是低空掠过 ...
- vue注册全局过滤器
1.src目录下创建filter文件 /** * 男女 * @param val * @returns {string} */ const status = val => { let name ...
- 笔记-twisted源码-import reactor解析
笔记-twisted源码-import reactor解析 1. twisted源码解析-1 twisted reactor实现原理: 第一步: from twisted.internet ...
- PAT T1011 Cut Rectangles
大模拟题,按要求建立多边形,先定位斜边的位置,再分类讨论~ #include<bits/stdc++.h> using namespace std; ; struct node { dou ...
- centos7的网络管理(参考使用)
How to Setup network on centos 7 Posted krizna Centos, Centos 7 After installing Centos 7, You may ...
- Fiddler抓包(基本使用方法、web+app端抓包、篡改数据、模拟低速)
1.HTTP代理原理图 http服务器代理:既是web服务器,又是web客户端 接口vs端口: 接口:包含地址和端口 端口:类似于USB接口 地址:127.0.0.1,端口默认:8888 ...
- CSP2019 Emiya 家今天的饭
Description: 有 \(n\) 中烹饪方法和 \(m\) 种食材,要求: 至少做一种菜 所有菜的烹饪方法各不相同 同种食材的菜的数量不能超过总菜数的一半 求做菜的方案数. Solution1 ...