很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html

创建并修改配置文件conf/spark.conf

cp conf/spark.conf.template conf/spark.conf

参考:https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-sparkbench.md,设置属性为下列值

   # Spark home
   hibench.spark.home      /opt/cloudera/parcels/CDH--.cdh5./lib/spark

   # Spark master
   #   standalone mode: spark://xxx:7077
   #   YARN mode: yarn-client
   hibench.spark.master    yarn-client

执行脚本

 bin/workloads/micro/wordcount/prepare/prepare.sh

返回信息

[root@node1 prepare]# ./prepare.sh
patching args=
Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf
Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf
Parsing conf: /home/cf/app/HiBench-master/conf/spark.conf
Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf
probe -.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient--cdh5.14.2-tests.jar
start HadoopPrepareWordcount bench
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Input
Deleted hdfs://node1:8020/HiBench/Wordcount/Input
Submit MapReduce Job: /opt/cloudera/parcels/CDH--.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn jar /opt/cloudera/parcels/CDH--.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-examples--cdh5. -D mapreduce.randomtextwriter.bytespermap= -D mapreduce.job.maps= -D mapreduce.job.reduces= hdfs://node1:8020/HiBench/Wordcount/Input
The job took  seconds.
finish HadoopPrepareWordcount bench

执行脚本

bin/workloads/micro/wordcount/spark/run.sh

返回信息

[root@node1 spark]# ./run.sh
patching args=
Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf
Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf
Parsing conf: /home/cf/app/HiBench-master/conf/spark.conf
Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf
probe -.cdh5./lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient--cdh5.14.2-tests.jar
start ScalaSparkWordcount bench
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Output
Deleted hdfs://node1:8020/HiBench/Wordcount/Output
hdfs -.cdh5./bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -du -s hdfs://node1:8020/HiBench/Wordcount/Input
Export env: SPARKBENCH_PROPERTIES_FILES=/home/cf/app/HiBench-master/report/wordcount/spark/conf/sparkbench/sparkbench.conf
Export env: HADOOP_CONF_DIR=/etc/hadoop/conf.cloudera.yarn
Submit Spark job: /opt/cloudera/parcels/CDH--.cdh5./lib/spark/bin/spark-submit  --properties- --executor-cores  --executor-memory 4g /home/cf/app/HiBench-master/sparkbench/assembly/target/sparkbench-assembly-7.1-SNAPSHOT-dist.jar hdfs://node1:8020/HiBench/Wordcount/Input hdfs://node1:8020/HiBench/Wordcount/Output
// :: INFO remote.RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
finish ScalaSparkWordcount bench

查看report/hibench.report

Type         Date       Time     Input_data_size      Duration(s)          Throughput(bytes/s)  Throughput/node
HadoopWordcount -- ::
ScalaSparkWordcount -- ::                                                   

\report\wordcount\spark下有多个文件:monitor.log是原始日志,bench.log是scheduler.DAGScheduler和scheduler.TaskSetManager信息,monitor.html可视化了系统的性能信息,\conf\wordcount.conf、\conf\sparkbench\spark.conf和\conf\sparkbench\sparkbench.conf是本次任务的环境变量

monitor.html中包含了Memory usage heatmap等统计图:

根据官方文档 https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-sparkbench.md ,还可以修改 hibench.scale.profile 调整测试的数据规模,修改 hibench.default.map.parallelism 和 hibench.default.shuffle.parallelism 调整并行化,修改hibench.yarn.executor.num、hibench.yarn.executor.cores、spark.executor.memory和spark.driver.memory控制Spark executor 的数量、核数、内存和driver的内存。

HiBench成长笔记——(3) HiBench测试Spark的更多相关文章

  1. HiBench成长笔记——(1) HiBench概述

    测试分类 HiBench共计19个测试方向,可大致分为6个测试类别:分别是micro,ml(机器学习),sql,graph,websearch和streaming. 2.1 micro Benchma ...

  2. HiBench成长笔记——(4) HiBench测试Spark SQL

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 和 https://www.cnb ...

  3. HiBench成长笔记——(6) HiBench测试结果分析

    Scan Join Aggregation Scan Join Aggregation Scan Join Aggregation Scan Join Aggregation Scan Join Ag ...

  4. HiBench成长笔记——(5) HiBench-Spark-SQL-Scan源码分析

    run.sh #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributo ...

  5. HiBench成长笔记——(2) CentOS部署安装HiBench

    安装Scala 使用spark-shell命令进入shell模式,查看spark版本和Scala版本: 下载Scala2.10.5 wget https://downloads.lightbend.c ...

  6. HiBench成长笔记——(7) 阅读《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》

    <The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis>内容精选 We th ...

  7. HiBench成长笔记——(10) 分析源码execute_with_log.py

    #!/usr/bin/env python2 # Licensed to the Apache Software Foundation (ASF) under one or more # contri ...

  8. HiBench成长笔记——(9) 分析源码monitor.py

    monitor.py 是主监控程序,将监控数据写入日志,并统计监控数据生成HTML统计展示页面: #!/usr/bin/env python2 # Licensed to the Apache Sof ...

  9. HiBench成长笔记——(8) 分析源码workload_functions.sh

    workload_functions.sh 是测试程序的入口,粘连了监控程序 monitor.py 和 主运行程序: #!/bin/bash # Licensed to the Apache Soft ...

随机推荐

  1. Win Tomcat8 占用内存过高

    1.解压版 找到tomcat/bin/catalina.bat 文件,修改对应参数 2.安装版 windows服务执行的是bin/tomcat.exe.他读取注册表中的值,而不是catalina.ba ...

  2. i.MX RT600之DSP开发环境调试篇

    i.MX RT600的Cadence Xtensa HiFi 4 Audio DSP 是一个高度优化过的音频处理器,主频高达600MHz,专门为音频信号的编码.解码以及预处理和后处理模块而设计,功能十 ...

  3. centos7搭建hadoop2.10完全分布式

    本篇介绍在centos7中大家hadoop2.10完全分布式,首先准备4台机器:1台nn(namenode);3台dn(datanode) IP hostname 进程 192.168.30.141 ...

  4. 使用python实现离散时间傅里叶变换

    以下内容引用链接:https://blog.csdn.net/baidu_37352210/article/details/79596633 (注意:通过如下内容可知,将序列信号进行傅里叶变换后,得到 ...

  5. Django--redis 保存session

    pipenv install django-redis settings.py: # 作为 cache backend 使用配置 使用redis保存session CACHES = { "d ...

  6. 4 JavaScript异常&debugger&保留关键字

    try:语句测试代码块错误 catch:语句处理错误,一般提供一个对象如catch(err)用来存储错误信息 throw: 语句创建自定义错误,抛出的信息可以被catch捕获 JavaScript错误 ...

  7. Pytorch本人疑问(1) torch.nn和torch.nn.functional之间的区别

    在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看 ...

  8. tensorflow非线性回归(03-1)

    这个程序为简单的三层结构组成:输入层.中间层.输出层 要理清各层间变量个数 import numpy as np import matplotlib.pyplot as plt import tens ...

  9. 五、Centos7安装mysql:第一步查看系统有无mysql,然后删除之

    CentOS下MySQL的彻底卸载 原创 2015年10月12日 00:16:02 标签: 21149 编辑 删除 #################CentOS7下MySQL的卸载######### ...

  10. 【快学springboot】1.快速创建springboot项目

    若图片查看异常,请前往掘金查看:https://juejin.im/post/5d00e793f265da1b614ff10b 使用spring initialize工具快速创建springboot项 ...