洛谷P3694 邦邦的大合唱站队【状压dp】
状压dp
应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移)
题目背景
\(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题。
题目描述
\(N\)个偶像排成一列,他们来自\(M\)个不同的乐队。每个团队至少有一个偶像。
现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。
请问最少让多少偶像出列?
输入格式
第一行\(2\)个整数\(N\),\(M\)。
接下来\(N\)个行,每行一个整数\(a_i(1\le a_i \le M)\),表示队列中第i个偶像的团队编号。
输出格式
一个整数,表示答案
输入输出样例
输入
12 4
1
3
2
4
2
1
2
3
1
1
3
4
输出
7
说明/提示
【样例解释】
\(1 \ 3 \ √\\
3\ 3\\
2\ 3 \ √\\
4 \ 4\\
2 \ 4 \ √\\
1 \ 2 \ √\\
2 \ 2\\
3 \ 2 \ √\\
1 \ 1\\
1 \ 1\\
3 \ 1 \ √\\
4 \ 1 \ √\)
【数据规模】
对于\(20\%\)的数据,\(N\le 20, M=2\)
对于\(40\%\)的数据,\(N\le 100, M\le 4\)
对于\(70\%\)的数据,\(N\le 2000, M\le 10\)
对于全部数据,\(1\le N\le 10^5\), \(M\le 20\)
分析
看到这友好的乐队数范围,很容易就想到了状压dp,但是状态到底找哪个,记录答案的\(f\)数组开几维都是问题,我们来分析一下,题目中给出的乐队\(M\)的范围是\(20\),而状态压缩就是从小的范围入手的,所以\(f\)数组的状态那一维肯定是关于乐队的,再看题目中问的,询问的是要最少拿出来多少人,那么这个状态肯定就是第几个乐队入队的状态,记录的是当前状态下出队人数的最小,然后枚举最后一个位置的乐队,那么需不需要第二维呢?看起来是不需要的,因为我们每次转移都是从上一次当前乐队的人未放入到放入,然后加上当前乐队人数,减去增加的长度中当前乐队的人数,也就是算出前边需要出队的人数(这个人数用\(sum\)数组记录前缀和来实现),就是这一次需要拿出来的人数,然后每次转移都取一次\(min\),最终状态全为\(1\)的时候的\(f\)数组就是答案。状态转移方程如下:
\]
其中\(num\)是第\(j\)个乐队的人数,\(len\)是到现在状态的队伍长度,预处理一下就可以。\(sum\)就是当前乐队在这一段中的人数。
如果一共有\(M\)个乐队,最终答案就是\(f[(1<<M)-1]\)
总结一下数组代表的东西:
\(f[i]\)代表状态为\(i\)时出队的最小人数,\(sum[i][j]\)表示前\(i\)长度里,\(j\)乐队的人数,\(num[j]\)代表的就是\(j\)乐队的总人数。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 21;
int f[1<<maxn];
int num[maxn];
int a[100005];
int sum[100005][maxn];
int n,m;
int main(){
cin>>n>>m;
for(int i=1;i<=n;++i){
cin>>a[i];
}
for(int i=1;i<=n;++i){
num[a[i]]++;//记录每个乐队的总人数
for(int j=1;j<=m;++j)sum[i][j] = sum[i-1][j];//初始化sum数组
sum[i][a[i]]++;//求每个乐队人数的前缀和
}
memset(f,0x3f,sizeof(f));//初始化最大值
f[0] = 0;//一个乐队都没有的时候取0人
for(int i=1;i<(1<<m);++i){
int len = 0;
for(int j=1;j<=m;++j)if(i & (1<<(j-1)))len += num[j];//如果当前状态下取了j乐队的人,总人数就加上j乐队的人数
for(int j=1;j<=m;++j){//枚举站在最后一个位置的乐队
if(i & (1<<(j-1)))//效率优化,当前状态取了他再进行取min,不然取min没有意义
f[i] = min(f[i],f[i ^ (1<<(j-1))] + num[j] - sum[len][j]+sum[len - num[j]][j]);//状态转移,取第j个乐队要加上该乐队人数,减去这一段中本来就有的该乐队人数
}
}
int ans = f[(1<<m)-1];
cout<<ans;
}
洛谷P3694 邦邦的大合唱站队【状压dp】的更多相关文章
- P3694 邦邦的大合唱站队 (状压DP)
题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...
- 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)
洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...
- 洛谷 P3694 邦邦的大合唱站队 状压DP
题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...
- 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...
- 【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)
题目链接 题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 这是道状压\(DP\)好题啊.. ...
- BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】
[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- 洛谷P2396 yyy loves Maths VII【状压dp】
题目:https://www.luogu.org/problemnew/show/P2396 题意:有n个数,每次选择一个表示走$a[i]$步,每个数只能选一次. 最多有两个厄运数字,如果走到了厄运数 ...
- 洛谷 3112 [USACO14DEC]后卫马克Guard Mark——状压dp
题目:https://www.luogu.org/problemnew/show/P3112 状压dp.发现只需要记录当前状态的牛中剩余承重最小的值. #include<iostream> ...
- 洛谷 P7324 - [WC2021] 表达式求值(状压+dp)
题面传送门 现场人傻系列-- 首先建出 \(E\) 的表达式树,具体来说表达式的每一个叶子节点表示一个数组 \(A_i\),每一个非叶子节点都表示一次运算,它的值表示左右儿子进行该运算后得到的结果.这 ...
随机推荐
- java方法句柄-----3.方法句柄的实现接口
目录 1.使用方法句柄实现接口 1.使用方法句柄实现接口 2.3节介绍的动态代理机制可以在运行时为多个接口动态创建实现类,并拦截通过接口进行的方法调用.方法句柄也具备动态实现一个接口的能力.这是通 ...
- webpack+vue2.0项目 (二)热加载,vue-router
目录创建好之后,命令行输入 npm run dev 因为在配置文件config/index.js里: dev: { env: require('./dev.env'), port: 8080, aut ...
- Java实现 蓝桥杯算法提高 求最大值
算法提高 求最大值 时间限制:1.0s 内存限制:256.0MB 问题描述 给n个有序整数对ai bi,你需要选择一些整数对 使得所有你选定的数的ai+bi的和最大.并且要求你选定的数对的ai之和非负 ...
- Java实现 LeetCode 226 翻转二叉树
226. 翻转二叉树 翻转一棵二叉树. 示例: 输入: 4 / \ 2 7 / \ / \ 1 3 6 9 输出: 4 / \ 7 2 / \ / \ 9 6 3 1 备注: 这个问题是受到 Max ...
- java实现BellmanFord算法
1 问题描述 何为BellmanFord算法? BellmanFord算法功能:给定一个加权连通图,选取一个顶点,称为起点,求取起点到其它所有顶点之间的最短距离,其显著特点是可以求取含负权图的单源最短 ...
- PAT 数字黑洞
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字.一直重复这样做,我们很快会停在有“数字黑洞 ...
- Spring AOP 扫盲
关于AOP 面向切面编程(Aspect-oriented Programming,俗称AOP)提供了一种面向对象编程(Object-oriented Programming,俗称OOP)的补充,面向对 ...
- 一个可扩展的弹幕播放器的HTML5实现范例---ABPlayerHTML5
ABPlayerHTML5 是一个简单易懂的现代弹幕魔法播放器.这个项目意在取代基于 Flash 的 ABPlayer,同时也希望能为新一代的HTML5弹幕播放器打造一个实现范例.这个播放器將用相对通 ...
- <VCC笔记> 溢出与unchecked
在程序运算或者数据转换的时候,由于各种数据类型有各自的范围,运算的时候,其结果如果超出这个范围,就被称之为溢出.熟悉C#的同志们应该了解用来解决溢出(Overflow)问题的checked,unche ...
- IP地址和端口
IP地址是网络中计算机的唯一标识.没有IP地址,计算机无法接入互联网. IPv4地址32bit,用点分十进制表示,如202.38.64.3 IPv6地址128bit,用冒号分割十六进制表示,如2001 ...