入门大数据---Flume整合Kafka
一、背景
先说一下,为什么要使用 Flume + Kafka?
以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合后的数据输入到 Storm 等分布式计算框架中,可能就会超过集群的处理能力,这时采用 Kafka 就可以起到削峰的作用。Kafka 天生为大数据场景而设计,具有高吞吐的特性,能很好地抗住峰值数据的冲击。
二、整合流程
Flume 发送数据到 Kafka 上主要是通过 KafkaSink
来实现的,主要步骤如下:
1. 启动Zookeeper和Kafka
这里启动一个单节点的 Kafka 作为测试:
# 启动Zookeeper
zkServer.sh start
# 启动kafka
bin/kafka-server-start.sh config/server.properties
2. 创建主题
创建一个主题 flume-kafka
,之后 Flume 收集到的数据都会发到这个主题上:
# 创建主题
bin/kafka-topics.sh --create \
--zookeeper hadoop001:2181 \
--replication-factor 1 \
--partitions 1 --topic flume-kafka
# 查看创建的主题
bin/kafka-topics.sh --zookeeper hadoop001:2181 --list
3. 启动kafka消费者
启动一个消费者,监听我们刚才创建的 flume-kafka
主题:
# bin/kafka-console-consumer.sh --bootstrap-server hadoop001:9092 --topic flume-kafka
4. 配置Flume
新建配置文件 exec-memory-kafka.properties
,文件内容如下。这里我们监听一个名为 kafka.log
的文件,当文件内容有变化时,将新增加的内容发送到 Kafka 的 flume-kafka
主题上。
a1.sources = s1
a1.channels = c1
a1.sinks = k1
a1.sources.s1.type=exec
a1.sources.s1.command=tail -F /tmp/kafka.log
a1.sources.s1.channels=c1
#设置Kafka接收器
a1.sinks.k1.type= org.apache.flume.sink.kafka.KafkaSink
#设置Kafka地址
a1.sinks.k1.brokerList=hadoop001:9092
#设置发送到Kafka上的主题
a1.sinks.k1.topic=flume-kafka
#设置序列化方式
a1.sinks.k1.serializer.class=kafka.serializer.StringEncoder
a1.sinks.k1.channel=c1
a1.channels.c1.type=memory
a1.channels.c1.capacity=10000
a1.channels.c1.transactionCapacity=100
5. 启动Flume
flume-ng agent \
--conf conf \
--conf-file /usr/app/apache-flume-1.6.0-cdh5.15.2-bin/examples/exec-memory-kafka.properties \
--name a1 -Dflume.root.logger=INFO,console
6. 测试
向监听的 /tmp/kafka.log
文件中追加内容,查看 Kafka 消费者的输出:
可以看到 flume-kafka
主题的消费端已经收到了对应的消息:
入门大数据---Flume整合Kafka的更多相关文章
- 入门大数据---Spark_Streaming整合Kafka
一.版本说明 Spark 针对 Kafka 的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10,其主要区别如下 ...
- 入门大数据---Spark_Streaming整合Flume
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...
- 入门大数据---Flume 简介及基本使用
一.Flume简介 Apache Flume 是一个分布式,高可用的数据收集系统.它可以从不同的数据源收集数据,经过聚合后发送到存储系统中,通常用于日志数据的收集.Flume 分为 NG 和 OG ( ...
- 入门大数据---Flume的搭建
一.下载并解压到指定目录 崇尚授人以渔的思想,我说给大家怎么下载就行了,就不直接放连接了,大家可以直接输入官网地址 http://flume.apache.org ,一般在官网的上方或者左边都会有Do ...
- flume 整合 kafka
flume 整合 kafka: flume:高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统. kafka:分布式的流数据平台. flume 采集业务日志,发送到kafka 一. ...
- 入门大数据---Kafka的搭建与应用
前言 上一章介绍了Kafka是什么,这章就讲讲怎么搭建以及如何使用. 快速开始 Step 1:Download the code Download the 2.4.1 release and un-t ...
- 入门大数据---Flink学习总括
第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...
- flume 整合kafka
背景:系统的数据量越来越大,日志不能再简单的文件的保存,如此日志将会越来越大,也不方便查找与分析,综合考虑下使用了flume来收集日志,收集日志后向kafka传递消息,下面给出具体的配置 # The ...
- 大数据技术之Kafka
Kafka概述 1.1 消息队列 (1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除) 点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息 ...
随机推荐
- jQuery-简单理解
1.概念 jQuery是js的一个类库,主要封装的是js中DOM操作部分,使用和原生js一样 2.代码展示 HTML部分 封装原理 test测试 JS部分 //声明对象 var bjsxt = {}; ...
- Rocket - devices - CLINT
https://mp.weixin.qq.com/s/4LfZZDKCTQhiKIUjvbDKEg 简单介绍CLINT的实现. 1. 概述 CLINT即是Core Local Interrupter的 ...
- Chisel3 - util - RRArbiter
https://mp.weixin.qq.com/s/GcNIFkHfa0gW0HKkKvHZEQ 循环优先级(Round Robin)仲裁器. 参考链接: https://github. ...
- Java实现 LeetCode 565 数组嵌套(没有重复值的数组)
565. 数组嵌套 索引从0开始长度为N的数组A,包含0到N - 1的所有整数.找到并返回最大的集合S,S[i] = {A[i], A[A[i]], A[A[A[i]]], - }且遵守以下的规则. ...
- Java实现考察团组成
考察团组成 某饭店招待国外考察团.按照标准,对领导是400元/人,随团职员200元/人,对司机50元/人. 考察团共36人,招待费结算为3600元,请问领导.职员.司机各几人. 答案是三个整数,用逗号 ...
- set基本运用
/* set集合基本用法 */ #include<iostream> #include<set> using namespace std; //set<T>a; v ...
- 用struts的action运行jsp页面
struts是开源框架.使用Struts的目的是为了帮助我们减少在运用MVC设计模型来开发Web应用的时间.如果我们想混合使用Servlets和JSP的优点来建立可扩展的应用,struts是一个不错的 ...
- v-on 缩写
<!-- 完整语法 --> <a v-on:click="doSomething"></a> <!-- 缩写 --> <a @ ...
- Email地址验证
<script>function validateForm(){ var x=document.forms["myForm"]["email"].v ...
- 安装并配置Samba
1. 安装 samba ~$sudo apt-get install samba 2. 修改 samba 的配置文件 ~$sudo gedit /etc/samba/smb.conf 添加如下内容 [ ...