UVA 10003 区间DP
这个题目蛮有新意的,一度导致我没看透他是区间DP
给一个0-L长度的木板,然后给N个数,表示0-L之间的某个刻度,最后要用刀把每个刻度都切一下 使其断开,然后每次分裂的cost是分裂前的木板的长度。求整个分开之后的最小cost。
当时下意识就想到类似花瓶插花问题,即dp[i][j],表示第i个事物放在第j次动作来的最小代价,但是当我写起来发现很麻烦,我是以刻度点来表示的i,结果发现处理起来相当麻烦,因为实体实际是一块一块的小木板,以点作为转移变量 不仅要加诸多限制,而且加完后发现会互相矛盾,原因在于点本身不稳定,他的切割不仅涉及次数,还涉及左右板块的各种组合可能。
后来想了一下,此题反过来想,其实是从小木块堆叠成大木块,从单个的组合为成对的 然后组合成3个或者4个的。。。这不是就个区间dp吗。。然后问题就变得超级简单啦。。。连我都不相信原本让我写的这么复杂的。。反过来一想就这么几行。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp[][];
int L,sz[][];
int A[],n;
int main()
{
while (scanf("%d",&L) && L)
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&A[i]);
memset(dp,-,sizeof dp);
A[n+]=L;
n++;
sort(A+,A+n+);
for (int i=;i<=n;i++){
sz[i][]=sz[i-][];
sz[i][]=A[i];
dp[i][i]=;
}
for (int i=;i<n;i++){
for (int j=;j+i<=n;j++){
int k=j+i;
int val=sz[k][]-sz[j][];
for (int w=j;w<=k;w++){
int tmp=dp[j][w]+dp[w+][k]+val;
if (dp[j][k]<){
dp[j][k]=tmp;
}
else{
dp[j][k]=min(dp[j][k],tmp);
}
}
}
}
printf("The minimum cutting is %d.\n",dp[][n]); }
return ;
}
UVA 10003 区间DP的更多相关文章
- 紫书 例题 9-9 UVa 10003 (区间dp+递推顺序)
区间dp,可以以一个区间为状态,f[i][j]是第i个切点到第j个切点的木棍的最小费用 那么对于当前这一个区间,枚举切点k, 可以得出f[i][j] = min{dp(i, k) + dp(k, j) ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- UVA 1626 区间dp、打印路径
uva 紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子. dp[i][j]=MIN{dp[i+1][j-1] | if( ...
- uva 10891 区间dp+记忆化搜索
https://vjudge.net/problem/UVA-10891 给定一个序列x,A和B依次取数,规则是每次只能从头或者尾部取走若干个数,A和B采取的策略使得自己取出的数尽量和最大,A是先手, ...
- UVa 1630 区间DP Folding
一个字符串如果能简写,要么是重复多次,按题中的要求简写:要么是左右两个部分分别简写后再拼起来. dp(i, j)表示字串(i, j)所能被简写的最短的字符串. 判断一个字符串是否为周期串以及求出它的周 ...
- UVA 10891 区间DP+博弈思想
很明显带有博弈的味道.让A-B最大,由于双方都采用最佳策略,在博弈中有一个要求时,让一方的值尽量大.而且由于是序列,所以很容易想到状态dp[i][j],表示序列从i到j.结合博弈中的思想,表示初始状态 ...
- 紫书 例题 9-10 UVa 1626 (区间dp + 输出技巧)
当前区间f(i, j)分两种情况,一种是s[i]于s[j]符合要求,那么可以转移到f[i + 1][j - 1] 这样答案只会更小或者相等 第二种是直接分成两个部分, 即f[i][j] = f[i][ ...
- Cutting Sticks UVA - 10003(DP 仍有不明白的地方)
题意:对一根长为l的木棒进行切割,给出n个切割点,每次切割的价值,等于需要切割的木头长度. 一开始理解错了,认为切割点时根据当前木条的左端点往右推算. 实际上,左端点始终是不变的一直是0,右端点一直是 ...
- uva 10003 Cutting Sticks 【区间dp】
题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...
随机推荐
- spring源码第一章_获取源码并将源码转为eclipse工程
1.通过http://gitforwindows.org/下载github 2.通过http://services.gradle.org/distributions/下载gradle:gardle类似 ...
- 基于Python的大数据的分页模型代码
最近在写一个cmdb系统的分页,尽管Django本身有分页的模块儿,但是还是想实现一下自己心中想的分页的一种逻辑 因为,在我们工作当中,当我们的数据量超级大的时候,其实我们每次分页查询都不必将所有的数 ...
- Python基础week2
本节内容 列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1. 列表.元组操作 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作 定义列表 ...
- 51nod 1391:01串
1391 01串 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 给定一个01串S,求出它的一个尽可能长的子串S[i. ...
- eclipse生成mybatis的逆向工程-mybatis代码自动生成
首先,工作中一直在使用命令方式的mybatis的代码自动生成,今天把自己的笔记本直接搞一个在eclipse中生成的逆向代码生成工程,方便自己在家学习使用,在搞这个工程的过程中由于自己搞了一套环境,所i ...
- Android的事件处理机制之基于回调的事件处理
回调机制 如果说事件监听机制是一种委托式的事件处理,那么回调机制则与之相反,对于基于回调的事件处理模型来说,事件源与事件监听器是统一的,换种方法说事件监听器完全消失了,当用户在GUI组件上激发某个事件 ...
- 用JS写一个网站树形菜单
先上效果图: 主体内容就是侧边展示的一二三级菜单,树形结构的. 前端页面布局内容,页面内容简单用ul li 来完成所有的罗列项.用先后顺序来区分一级二级三级: <body> <b&g ...
- 连接mysql报错java.sql.SQLException: The server time zone value '�й���ʱ��' is unrecognized...解决方法
报错内容: java.sql.SQLException: The server time zone value '�й���ʱ��' is unrecognized or represents mo ...
- 038、Java中逻辑运算之非运算“!”
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...
- 003.Delphi插件之QPlugins,菜单插件加强
相比上一篇的菜单插件,这个在创建和销毁时候,做了增强,同时做了2个菜单对应的窗口 unit MenuSvc; interface uses windows, classes, SysUtils, Gr ...