UVA - 10003 Cutting Sticks(切木棍)(dp)
题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列)。你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小。每次切割的费用等于被切割的木棍长度。
分析:
1、solve(i, j)为切割小木棍i~j的最优费用。
2、设k(i<k<j),solve(i, j) = min{solve(i, k) + solve(k, j)} + a[j] - a[i]。
k是切割小木棍i~j费用最优的切割点,a[j] - a[i] 为小木棍i ~ j 的长度,即切割小木棍i~j的费用。
3、将小木棍的n个切割点标记为1~n,左端点为0,右端点为n + 1,则答案为solve(0, n + 1)。
4、注意L和n个切割点的位置都是positive number,所以可能是浮点数。
#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 50 + 10;
const int MAXT = 10000 + 10;
using namespace std;
double a[MAXN], dp[MAXN][MAXN];
double solve(int l, int r){
if(dcmp(dp[l][r], -1)) return dp[l][r];
if(r - l == 1) return dp[l][r] = 0.0;
double mi = 1e15;
for(int k = l + 1; k < r; ++k){
double tmp = solve(l, k) + solve(k, r);
if(dcmp(tmp, mi) == -1) mi = tmp;
}
return dp[l][r] = mi + a[r] - a[l];
}
int main(){
double L;
while(scanf("%lf", &L) == 1){
if(!dcmp(L, 0)) return 0;
int n;
scanf("%d", &n);
a[0] = 0.0;
for(int i = 1; i <= n; ++i){
scanf("%lf", &a[i]);
}
a[n + 1] = L;
for(int i = 0; i <= n + 1; ++i)
for(int j = 0; j <= n + 1; ++j)
dp[i][j] = -1;
printf("The minimum cutting is %g.\n", solve(0, n + 1));
}
return 0;
}
UVA - 10003 Cutting Sticks(切木棍)(dp)的更多相关文章
- UVA 10003 Cutting Sticks 切木棍 dp
题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...
- uva 10003 Cutting Sticks 【区间dp】
题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...
- UVA 10003 cuting sticks 切木棍 (区间dp)
区间dp,切割dp[i][j]的花费和切法无关(无后效性) dp[i][j]表示区间i,j的花费,于是只要枚举切割方法就行了,区间就划分成更小的区间了.O(n^3) 四边形不等式尚待学习 #inclu ...
- UVa 10003 - Cutting Sticks(区间DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 10003 Cutting Sticks (区间dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: 打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...
- UVA 10003 Cutting Sticks 区间DP+记忆化搜索
UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...
- uva 10003 Cutting Sticks(区间DP)
题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...
- UVA 10003 Cutting Sticks(区间dp)
Description Cutting Sticks You have to cut a wood stick into pieces. The most affordable company ...
- UVA 10003 Cutting Sticks
题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...
随机推荐
- java基础面试题(转)
这里收集了一些java 面试题的链接: http://blog.csdn.net/jackfrued/article/details/44921941 原文来自:http://www.cnblogs. ...
- maven构建项目失败----99%
删除工作空间信息,重新导入,问题解决, 该问题,可能是安装Spring IDE 导致的问题,eclipse兼容性问题
- 解题报告:CF622F
懒得码字了: 题目链接:CF622F 很简单的数论题,紫题显然是过了些,(不要说... 对于这个式子,是一个\(k+1\)次的多项式,插\(k+2\)次值就好了,烦人的是处理逆元,我的费马小定理显然是 ...
- Windows7 wampServer3.0.6 Mutillidae2.7.12
在Mac上访问虚拟机中的mutillidae,报403: By default, Mutillidae only allow access from localhost ***: Parallels ...
- 对S7通信的连接的理解以及对比CAN通信协议来理解PLC通讯
对S7通信的连接的理解以及对比CAN通信协议来理解PLC通讯. 对功能块 SFB12 和 SFB13 的R_ID参数的理解 ? 对于同一个数据包.发送方与接收方的R_ID应该相同. 用下图解释 双向连 ...
- vs2010编译C++ 运算符
// CTest.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #include &l ...
- Kubernetes——命令行操作
如果集群初始化失败需要的操作: master: kubeadm reset #回答y 执行一条它提示给你的iptables命令即可 node: systemctl stop kubelet ...
- mysql批量插入更新操作
//添加关联赠品(确定) public function addGiveGoods($ids,$child,$parent_sku_no){ $license=new LicenseModel(); ...
- 064、Java中递归调用
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...
- WinForm_UI设计
下载