前言

Map为一个Java中一个重要的数据结构,主要表示<key, value>的映射关系对。本文包括了相关Map数据结构的总结和源码的阅读注释。

HashMap

初始化,可以选择第二个初始化函数来设置装载能力threshold和装载系数loadFactor

  • HashMap()
  • HashMap(int initialCapacity, float loadFactor)

HashMap中定义的一些常量:

  • static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

    缺省的初始大小

  • static final int MAXIMUM_CAPACITY = 1 << 30;

    最大限定大小,当超过这个值时,会resize()Integer.MAX_VALUE

  • static final float DEFAULT_LOAD_FACTOR = 0.75f;

    threshold = capacity*laodFactor

HashMap的大小始终为2的倍数,若插入时超过threshold时,会调用resize()来自动将大小扩大一倍。

值在Node<K,V>[] table中的定位方式为(n-1)&hash(key)

基本方法:

  • V put(K key, V value):若key不存在,则插入;若key存在,则更新value值,返回旧的value
  • V putIfAbsent(K key, V value)
  • V get(Object key):get不存在的key时会返回null,需要注意NullPointerException
  • int size()

遍历方式

  • forEach(lambda)通过lambda表达式进行遍历

  • entrySet().iterator()

    Iterator iter = map.entrySet().iterator();
    while(iter.hasNext()){
    Map.Entry e = (Map.Entry)iter.next();
    key = e.getKey();
    value = e.getValue();
    }
  • keySet().iterator()

    Iterator iter = map.keySet().iterator();
    while(iter.hasNext()){
    key = iter.next();
    value = map.get(key);
    }
  • values().iterator()

resize()

final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) { // 旧的大小已经达到设置的最大值时不再增加,改变阈值
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && // 新大小=旧大小*2
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // 阈值也一起*2
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // oldCap为0时处于初始化阶段,进行初始化
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) { // 将旧map移到新map中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null; // 置为null值方便GC
if (e.next == null) // 桶中没有链,直接赋值
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode) // 如果桶中为红黑树
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) { // 若为真,则在原来位置不变
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else { // 为假时说明扩容后原链表中的节点位置发生了改变
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead; // 原链表所在
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead; // 扩容部分节点位置加上了oldCap
}
}
}
}
}
return newTab;
}

冲突解决

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length; // 数组为空的情况
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null); // 没有冲突直接放入
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p; // 有冲突但是key相同,则覆盖原来的值
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 如果已经拉成红黑树则插入树中
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null); // 找到链表尾插入链表中
if (binCount >= TREEIFY_THRESHOLD - 1) // 如果桶的链长度超过阈值则拉成红黑树
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break; // 在链中找到相同的key则覆盖其值
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

Hashtable

初始化函数:

public Hashtable() {
this(11, 0.75f);
}

默认下initialCapacity = 11loadFactor = 0.75

插入操作put(K,V)

public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
} // Makes sure the key is not already in the hashtable.
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> entry = (Entry<K,V>)tab[index];
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) { // 找到相同的key则覆盖原值
V old = entry.value;
entry.value = value;
return old;
}
} addEntry(hash, key, value, index);
return null;
}

Hashtable的hash寻址方法为(hash & 0x7FFFFFFF) % tab.length,当插入的key之前有值时返回旧值,否则返回null。

addEntry(hash, key, value, index),当table的大小不够时,执行rehash()扩大table

private void addEntry(int hash, K key, V value, int index) {
Entry<?,?> tab[] = table;
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash(); tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
} // Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
modCount++;
}

rehash():

protected void rehash() {
int oldCapacity = table.length;
Entry<?,?>[] oldMap = table; // overflow-conscious code
int newCapacity = (oldCapacity << 1) + 1; // 新大小=原大小*2+1
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry<?,?>[] newMap = new Entry<?,?>[newCapacity]; modCount++;
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); // 更新阈值
table = newMap; for (int i = oldCapacity ; i-- > 0 ;) { // 将旧map中的值一道新map
for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next; int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = (Entry<K,V>)newMap[index];
newMap[index] = e;
}
}
}

与HashMap的区别

  • HashMap 继承自AbstractMap类,Hashtable继承自Dictionary类

  • Hashtable中的方法均用sychronized关键字修饰,为线程安全

  • 扩容方法不同,HashMap直接double,使得大小始终是2的倍数,Hashtable在double后加1

  • 在table中的查找方式不同:HashMap为hash&(n-1),Hashtable为(hash & 0x7FFFFFFF) % tab.length

TreeMap

TreeMap的本质是红黑树,红黑树是一种特殊的二叉查找树,所以TreeMap中的节点都是有序的。

TreeMap中节点Entry的定义为

static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK;
}

初始化函数:

public TreeMap() {
comparator = null;
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}

TreeMap支持自定义的比较器,若是使用空初始化函数,则默认为key的自然顺序

 /**
* The comparator used to maintain order in this tree map, or
* null if it uses the natural ordering of its keys.
*
* @serial
*/
private final Comparator<? super K> comparator;

插入操作put(K,V)

public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) { // root为空则直接new
compare(key, key); // type (and possibly null) check root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) { // 自定义comparator时
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value); // 如果key相等则直接覆盖value
} while (t != null);
}
else { // 使用key的comparable接口
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value); //找到相同的key则直接覆盖value返回
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent); // 插入节点
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e); // 红黑树自平衡过程
size++;
modCount++;
return null;
}

插入后红黑树的自平衡过程:

private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED; // 设插入节点的颜色为红 while (x != null && x != root && x.parent.color == RED) { // 当x.parent为黑时树已经平衡
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { // x.parent是祖父节点的左子节点
Entry<K,V> y = rightOf(parentOf(parentOf(x))); // x的uncle节点
if (colorOf(y) == RED) { // uncle为红的时候recolor
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x)); // 向上变色直到满足平衡条件
} else { // uncle为黑的时候则需要rotate
if (x == rightOf(parentOf(x))) { // 左右的情况,向左旋转
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) { // 右左的情况,向右旋转
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}

如有不对请多指正

【Java】Map总结和源码注释的更多相关文章

  1. java反射使用和源码解析

    1         反射 1.1            什么是反射 正射:指的是我们知道类的定义和类中的方法名称,直接先创建对象,然后通过对象去调用方法.例如: Apple apple = new A ...

  2. go map数据结构和源码详解

    目录 1. 前言 2. go map的数据结构 2.1 核心结体体 2.2 数据结构图 3. go map的常用操作 3.1 创建 3.2 插入或更新 3.3 删除 3.4 查找 3.5 range迭 ...

  3. 轻量级JAVA+EE企业应用实战(第4版)pdf电子书和源码的免费下载链接

    轻量级JAVA+EE企业应用实战(第4版)pdf电子书和源码的免费下载链接: pdf链接:https://pan.baidu.com/s/1dYIWtsv2haL4v7vx3w-8WQ 无提取密码源码 ...

  4. Java并发编程(七)ConcurrentLinkedQueue的实现原理和源码分析

    相关文章 Java并发编程(一)线程定义.状态和属性 Java并发编程(二)同步 Java并发编程(三)volatile域 Java并发编程(四)Java内存模型 Java并发编程(五)Concurr ...

  5. Dubbo原理和源码解析之“微内核+插件”机制

    github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...

  6. 【转】用JitPack发布开源库时附加文档和源码

    来自:http://www.gcssloop.com/course/jitpack-sources-javadoc 用JitPack发布开源库时附加文档和源码 很早之前写过一篇用JitPack发布An ...

  7. jQuery静态方法globalEval使用和源码分析

    Eval函数大家都很熟悉,但是globalEval方法却很少使用,大多数参考手册也没有相关api,下面就对其用法和源码相应介绍: jQuery.globalEval()函数用于全局性地执行一段Java ...

  8. Java文件操作源码大全

    Java文件操作源码大全 1.创建文件夹 52.创建文件 53.删除文件 54.删除文件夹 65.删除一个文件下夹所有的文件夹 76.清空文件夹 87.读取文件 88.写入文件 99.写入随机文件 9 ...

  9. Go语言备忘录:net/http包的使用模式和源码解析

    本文是晚辈对net/http包的一点浅显的理解,文中如有错误的地方请前辈们指出,以免误导! 转摘本文也请注明出处:Go语言备忘录:net/http包的使用模式和源码解析,多谢!  目录: 一.http ...

随机推荐

  1. [WC2010]重建计划(长链剖分+线段树+分数规划)

    看到平均值一眼分数规划,二分答案mid,边权变为w[i]-mid,看是否有长度在[L,R]的正权路径.设f[i][j]表示以i为根向下j步最长路径,用长链剖分可以优化到O(1),查询答案线段树即可,复 ...

  2. 35)PHP,关于PHP和html

    (1)其实无论是CSS还是js,又或者是html,都是可以随意的载入到我们的php文件中,其实这些文件就是一个外来的引入文件,所以,根本没有什么神奇的, 你要是想把php的结果有调理的展示,那么就直接 ...

  3. 吴裕雄--天生自然python学习笔记:python 用pygame模块开发俄罗斯方块游戏

    俄罗斯方块游戏 多年前,游戏机中最流行的游戏就是“俄罗斯方块”了.时至今日,虽然网络 游戏日新月异 ,但“俄罗斯方块”这款小游戏仍在许多人心中 占有一席之地.本例中, 我们将亲手设计一个简单的俄罗斯方 ...

  4. docker常用的命令-在自己心情低落的时候,告诫自己不要把负能量带给别人。

    daocker基础命令:https://www.cnblogs.com/xiaowenshu/p/10474746.html 一.Docker常用命令 安装部署好Dokcer后,执行的命令是docke ...

  5. Miller-Rabin素数检测算法

    遇到了一个题: Description: Goldbach's conjecture is one of the oldest and best-known unsolved problems in ...

  6. 如何在Windows服务器上新建一个Powershell.ps1的定时任务

    背景: 有一些一次性的Powershell脚本,需要我们每次都手动执行一下,为了简化工作,现在我们可以使用Windows自带的计划任务,进行定时执行. 该教程是在Windows Server 2012 ...

  7. spring-boot jpa mysql emoji utfmb4 异常处理

    spring-boot jpa mysql utf8mb4 emoji 写入失败 mysql database,table,column 默认为utf8mb4 Caused by: java.sql. ...

  8. 以elasticsearch-hadoop 向elasticsearch 导数,丢失数据的问题排查

    实际这是很久之前的问题了,当时没时间记录 这里简单回顾 项目基于 数据架构不方便说太细,最精简的 somedata-> [kafka]->spark-stream->elastics ...

  9. Jmeter之压力测试总结

    一.基本概念 1.线程组N:代表一定数量的并发用户,所谓并发就是指同一时刻访问发送请求的用户.线程组就是模拟并发用户访问. 2.Ramp-Up Period(in seconds):建立所有线程的周期 ...

  10. nowcoder-548C-Tachibana Kanade Loves Review

    链接:https://ac.nowcoder.com/acm/contest/548/C来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言10485 ...