python数据分析工具——Pandas、StatsModels、Scikit-Learn
Pandas
Pandas是 Python下最强大的数据分析和探索工具。它包含高级的数据结构和精巧的工具,使得在 Python中处理数据非常快速和简单。 Pandas构建在 Numpy之上,它使得以 Numpy为中心的应用很容易使用。Pandas的功能非常强大,支持类似于SQL的数据增、删、查、改,并且带有丰富的数据处理函数;支持时间序列分析功能;支持灵活处理缺失数据等。
Pandas的安装相对来说比较容易,安装好 Numpy之后,就可以直接安装了,通过pip install pandas或下载源码后 python setup. py install安装均可。由于我们频繁用到读取和写入Excel,但默认的 Pandas还不能读写 Excel文件,需要安装xlrd(读)和xlwt(写)库才能支持 Excel的读写,方法如下:
pip install xrd #为 Python添加读取 Excel的功能
pip install xlwt #为 Python添加写入 Excel的功能
Pandas基本的数据结构是 Series和 Dataframe。顾名思义, Series就是序列,类似一维数组; Data Frame则是相当于一张二维的表格,类似二维数组,它的每一列都是一个 Series。为了定位 Series中的元素, Pandas提供了Index对象,每个 Series都会带有一个对应的Index,用来标记不同的元素, Index的内容不一定是数字,也可以是字母、中文等,它类似于SQL中的主键。
类似地, Data Frame相当于多个带有同样 Index的 Series的组合,每个 Seiries都带有唯一的表头,用来标识不同的 Series。举个例子:
# -*- coding:utf-8 -*-
import pandas as pd #通常用pd作为 pandas的别名。
s=pd.Series([1,2,3], index=['a','b','c']) #创建一个序列s
d=pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c']) #创建一个表
d2=pd.DataFrame(s) #也可以用已有的序列来创建表格
print(d.head()) #预览前5行数据
print(d.describe()) #数据基本统计量
pd.read_excel('data.xls') #读取Exce1文件,创建 Dataframe
pd.read_csv('data.csv', encoding='utf-8') #读取文本格式的数据,一般用 encoding指定编码。
StatsModels
Pandas着眼于数据的读取、处理和探索,而StatsModels则更加注重数据的统计建模分析,它使得 Python有了R语言的味道。 StatsModels支持与 Pandas进行数据交互,因此,它与 Pandas结合,成为了 Python下强大的数据挖掘组合。
安装StatsModels相当简单,既可以通过pip安装,又可以通过源码安装。对于Windows用户来说,官网上甚至已经有编译好的exe文件以供下载。如果手动安装的话,需要自行解决好依赖问题, Statmodel依赖于Pandas(当然也依赖于 Pandas所依赖的),同时还依赖于pasty(一个描述统计的库)。
下面是一个用 Stats Models来进行ADF平稳性检验的例子。
# -*- coding: utf-8 -*-
from statsmodels.tsa.stattools import adfuller as ADF #导入ADF恰验
import numpy as np
ADF.(np.random.rand(100)) #返回的结果有ADF、p值
Scikit-Learn
Scikit-Learn是 Python下强大的机器学习工具包,它提供了完善的机器学习工具箱,包括数据预处理、分类、回归、聚类、预测和模型分析等。Scikit-Learn依赖于 Numpy、 Scipy和 Matplotlib,因此,只需要提前安装好这几个库,然后安装 Scikit-Learn就基本上没有什么问题了,安装方法和之前一样,要不就是pipinstall scikit-leam安装,要不就是下载源码自己安装。
创建一个机器学习的模型很简单:
# -*- coding:utf-8 -*-
from sklearn.linear_model import Linearregression #导入线性回归模型
model= Linearregression() #建立线性回归模型
print (model)
1)所有模型提供的接口有:
model fit0:训练模型,对于监督模型来说是 fit(x,y),对于非监督模型是fit(X)。
2)监督模型提供的接口有:
model predict(xnew):预测新样本
model predict proba(Xnew):预测概率,仅对某些模型有用(比如LR)
model score:得分越高,fit越好
3)非监督模型提供的接口有:
model transform(:从数据中学到新的“基空间”
model fit transform:从数据中学到新的基并将这个数据按照这组“基”进行转换。
Scikit- Learn本身提供了一些实例数据,比较常见的有安德森鸢尾花卉数据集、手写图像数据集等。现在使用鸢尾花数据集iris写一个简单的机器学习的例子。对于这个数据集,可以阅读《R语言数据挖掘实践——数据挖掘简介》
# -*- coding:utf-8 -*-
from sklearn import datasets #导入数据集
iris= datasets.load_iris() #加载数据集
print(iris.data.shape) #查看数据集大小
from sklearn import svm #导入SVM模型
clf=svm. LinearSVC() #建立线性SVM分类器
clf.fit(iris.data,iris.target) #用数据训练模型
clf.predict([[5.0,3.6,1.3,0.25]]) #训练好模型之后,输入新的数据进行预测
clf.coef_ #查看训练好模型的参数
python数据分析工具——Pandas、StatsModels、Scikit-Learn的更多相关文章
- python数据分析工具 | pandas
pandas是python下强大的数据分析和探索工具,是的python在处理数据时非常快速.简单.它是构建在numpy之上的,包含丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据. pa ...
- Python数据分析工具:Pandas之Series
Python数据分析工具:Pandas之Series Pandas概述Pandas是Python的一个数据分析包,该工具为解决数据分析任务而创建.Pandas纳入大量库和标准数据模型,提供高效的操作数 ...
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- Python数据分析之pandas基本数据结构:Series、DataFrame
1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...
- Python 数据分析:Pandas 缺省值的判断
Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 No ...
- 数据分析工具Pandas
参考学习资料:http://pandas.pydata.org 1.什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analys ...
- 数据分析工具pandas简介
什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis). Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建 ...
- python数据分析工具安装集合
用python做数据分析离不开几个好的轮子(或称为科学棧/第三方包等),比如matplotlib,numpy, scipy, pandas, scikit-learn, gensim等,这些包的功能强 ...
- Python数据分析之Pandas操作大全
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...
随机推荐
- PyTorch Hub发布!一行代码调用最潮模型,图灵奖得主强推
为了调用各种经典机器学习模型,今后你不必重复造轮子了. 刚刚,Facebook宣布推出PyTorch Hub,一个包含计算机视觉.自然语言处理领域的诸多经典模型的聚合中心,让你调用起来更方便. 有多方 ...
- Java 泛型数组问题
Java中不支持泛型数组, 以下代码会编译报错:generic array creation ArrayList<Integer>[] listArr = new ArrayList< ...
- 使用FME对CAD数据进行过滤、中心点替换转为shapefile
1.首先加载CAD数据,并暴露出需要使用到的相关字段.比如:block_number.fme_geometry.fme_type等字段. (本次的管网设备由于是一个圆圈里面有三个文字因此将fme_ty ...
- [ASP.NET Core MVC] 如何实现运行时动态定义Controller类型?
昨天有个朋友在微信上问我一个问题:他希望通过动态脚本的形式实现对ASP.NET Core MVC应用的扩展,比如在程序运行过程中上传一段C#脚本将其中定义的Controller类型注册到应用中,问我是 ...
- Java并发基础08. 造成HashMap非线程安全的原因
在前面我的一篇总结(6. 线程范围内共享数据)文章中提到,为了数据能在线程范围内使用,我用了 HashMap 来存储不同线程中的数据,key 为当前线程,value 为当前线程中的数据.我取的时候根据 ...
- new FileReader()
一.调用FileReader对象的方法 方法名 参数 描述abort none 中断读取readAsBinaryString file 将文件读取为二进制码readAsDataURL file 将文件 ...
- 大数据篇:Hbase
大数据篇:Hbase Hbase是什么 Hbase是一个分布式.可扩展.支持海量数据存储的NoSQL数据库,物理结构存储结构(K-V). 如果没有Hbase 如何在大数据场景中,做到上亿数据秒级返回. ...
- LeetCode 题解 | 面试题57 - II. 和为s的连续正数序列
题目描述 面试题57 - II. 和为s的连续正数序列 难度简单37收藏分享切换为英文关注反馈 输入一个正整数 target ,输出所有和为 target 的连续正整数序列(至少含有两个数). 序列内 ...
- AJAX对数据库增删改查实例
前端代码: <!DOCTYPE html><html><head><meta charset="UTF-8"><title&g ...
- redis 安装and对外开放端口
第一步: $ cd /usr/local/src $ wget http://download.redis.io/releases/redis-5.0.4.tar.gz $ tar xzf redis ...