洛谷 P5663 加工零件
题目传送门
解题思路:
最暴力的做法:
bfs模拟,每次将一个阶段的所有点拿出来,将其所有直连的点都放进队列,知道本阶段结束,最后看1号点会不会在最后一个阶段被放入队列.(洛谷数据40分)
优化了一下代码:
上面的做法我用了两个队列,发现代码可以优化一下,用一个队列.(洛谷数据55分).
正解:
对于一个点,如果它加工的零件是偶数阶段,则在一定范围内与它偶数距离的点都要提供原料.
对于一个点,如果它加工的零件是奇数阶段,则在一定范围内与它奇数距离的点都要提供原料.
那么这个一定范围是多少呢?
就是小于等于这个点加工阶段大小的范围.
代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue> using namespace std; int n,m,qq,x,y;
bool vis[];
queue<int> q,q1;
struct kkk{
vector<int > a;
int len;
}e[]; inline void solve() {
int id,s;
scanf("%d%d",&id,&s);
memset(vis,,sizeof(vis));
while(!q.empty()) q.pop();
while(!q1.empty()) q1.pop();
q.push(id);
vis[id] = ;
while(s--) {
while(!q.empty()) {
int v = q.front();
q.pop();
vis[v] = ;
if(e[v].len != )
for(int i = ;i < e[v].len; i++)
q1.push(e[v].a[i]);
}
while(!q1.empty()) {
int ee = q1.front();
vis[ee] = ;
q1.pop();
q.push(ee);
}
}
if(vis[]) printf("Yes\n");
else printf("No\n");
} int main() {
scanf("%d%d%d",&n,&m,&qq);
for(int i = ;i <= n; i++)
e[i].len = ;
for(int i = ;i <= m; i++) {
scanf("%d%d",&x,&y);
e[x].len++;e[y].len++;
e[x].a.push_back(y);
e[y].a.push_back(x);
}
for(int i = ;i <= qq; i++)
solve();
return ;
}
最暴力的做法
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue> using namespace std; int n,m,qq,x,y;
bool vis[];
queue<int> q;
struct kkk{
vector<int > a;
int len;
}e[]; inline void solve() {
int id,s;
scanf("%d%d",&id,&s);
memset(vis,,sizeof(vis));
while(!q.empty()) q.pop();
q.push(id);
vis[id] = ;
while(s--) {
int u = q.size();
for(int i = ;i <= u; i++) {
int v = q.front();
q.pop();
vis[v] = ;
if(e[v].len != )
for(int i = ;i < e[v].len; i++) {
if(vis[e[v].a[i]]) continue;
q.push(e[v].a[i]);
vis[e[v].a[i]] = ;
}
}
}
if(vis[]) printf("Yes\n");
else printf("No\n");
} int main() {
scanf("%d%d%d",&n,&m,&qq);
for(int i = ;i <= n; i++)
e[i].len = ;
for(int i = ;i <= m; i++) {
scanf("%d%d",&x,&y);
e[x].len++;e[y].len++;
e[x].a.push_back(y);
e[y].a.push_back(x);
}
for(int i = ;i <= qq; i++)
solve();
return ;
}
优化暴力的代码
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring> using namespace std; int n,m,qq,head[],ji[],ou[];
bool flag;
struct kkk{
int to,next;
}e[];
int tot;
queue<int> q; inline void add(int x,int y) {
e[++tot].to = y;
e[tot].next = head[x];
head[x] = tot;
} inline void spfa() {
ou[] = ;
q.push();
while(!q.empty()) {
int s = q.front();
q.pop();
for(int i = head[s];i != ; i = e[i].next) {
int t = e[i].to,jv = ji[t],ov = ou[t];
ji[t] = min(ji[t],ou[s] + );//更新奇数最短路
ou[t] = min(ou[t],ji[s] + );//更新偶数最短路
if(jv != ji[t] || ov != ou[t])
q.push(t);
}
}
} int main() {
scanf("%d%d%d",&n,&m,&qq);
for(int i = ;i <= m; i++) {
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
if(y == || x == ) flag = ;
}
memset(ji,0x3f3f,sizeof(ji));
memset(ou,0x3f3f,sizeof(ou));
spfa();
for(int i = ;i <= qq; i++) {
int id,jd;
scanf("%d%d",&id,&jd);
if(!flag) {
printf("No\n");
continue;
}
if(jd % == && ji[id] <= jd) {
printf("Yes\n");
continue;
}
if(jd % == && ou[id] <= jd) {
printf("Yes\n");
continue;
}
printf("No\n");
}
return ;
}
正解
//CSP-J2019 T4
洛谷 P5663 加工零件的更多相关文章
- 洛谷 P5663 加工零件 & [NOIP2019普及组] (奇偶最短路)
传送门 解题思路 很容易想到用最短路来解决这一道问题(题解法),因为两个点之间可以互相无限走,所以如果到某个点的最短路是x,那么x+2,x+4也一定能够达到. 但是如何保证这是正确的呢?比如说到某个点 ...
- P5663 加工零件
P5663 加工零件 题解 暴力搜索 搜索显然会TLE #include<iostream> #include<cstdio> #include<cstdlib> ...
- 洛谷P1248 加工生产调度
流水作业调度问题 有\(N\)个作业要在两台机器\(M_1\)和\(M_2\)组成的流水线上完成加工.每个作业\(i\)都必须先花时间\(a_i\)在\(M_1\)上加工,然后花时间\(b_i\)在\ ...
- 洛谷P1248 加工生产调度 贪心
正解:贪心 解题报告: 传送门$QwQ$ $umm$直接看可能比较难想,可以先考虑另一个题? 有$n$个小怪,每打一只小怪会扣$a_i$的血,打完之后会回升$b_i$的血,问至少要多少血量才能使全程血 ...
- P5663 加工零件 题解
原题链接 简要题意: 给定一个图,每次询问从 \(x\) 节点开始,\(y\) 步能不能达到 \(1\) 号节点. 算法一 这也是我本人考场算法.就是 深搜 . 因为你会发现,如果 \(x\) 用 \ ...
- 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山
前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...
- 洛谷P3655 差分数组 树状数组
题目链接:https://www.luogu.org/problemnew/show/P3655 不一定对,仅供参考,不喜勿喷,不喜勿喷. 先copy洛谷P3368 [模板]树状数组 2 题解里面一位 ...
- [洛谷P2365] 任务安排
洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...
- 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]
题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...
随机推荐
- ETC系列产品非接触式读卡器方案:SI522
随着科技的不断发展,出行上高速这是非常寻常的事.但是在很多节假日高峰时期,在高速路口塞车缴费给很多车主造成很大的烦心.为了解决这一系列的问题,科技发明了ETC这种便捷式缴费技术,让车主们顺畅通过高速路 ...
- 基于LAMP实现后台活动发布和前端扫码签到系统
目的 无论是公司.学校和社会团体,都会举办各式各样的活动,比如运动会.部门会议.项目会议.野炊.团建等.作为团队管理者来讲,当然希望能够把这类活动转移到线上形成完整的系统,类似于电子流的形式.本文以学 ...
- 通过流量管理器和 Azure Functions(作为代理)为全球用户提供最靠近的认知服务(或自定义API)
本实战是一个中等复杂度的综合性实战,涉及到的内容有TrafficManager,AzureFunctions,域名/域名解析等几个内容. 本案例基础介绍: https://www.bilibili.c ...
- 树莓派 Raspberry 软件源更改 看门狗启用
看门狗无法在pi1上执行,似乎后更高级的pi上面才可用 1.替换脚本 下面脚本请直接复制到终端执行!! 适用于raspbian-stretch(基于Debian9) sudo -s echo -e & ...
- G - Traffic
vin is observing the cars at a crossroads. He finds that there are n cars running in the east-west d ...
- vi/vim常用操作
什么是vim? Vim是从 vi 发展出来的一个文本编辑器.代码补全.编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用,和Emacs并列成为类Unix系统用户最喜欢的文本编辑器. vim的 ...
- UVA - 816 Abbott's Revenge(bfs)
题意:迷宫从起点走到终点,进入某点的朝向不同,可以出去的方向也不同,输出最短路. 分析:因为朝向决定接下来在该点可以往哪里走,所以每个点需要有三个信息:x,y,d(坐标和进入该点的朝向),所以将起点的 ...
- golang调用CertUtil获取文件md5
func getFileMD5(fileName string) string { cmd := exec.Command("cmd", "/C", " ...
- cf 506 A. Mr. Kitayuta, the Treasure Hunter
不知道这个sb题怎么做错了.. /*#include <bits/stdc++.h> #define LL long long using namespace std; inline in ...
- 用25行JavaScript语句实现一个简单的编译器
原文:https://www.iteye.com/news/32680 译者注:即使对于专业程序员来说,构造一个编译器也是颇具挑战性的任务,本文将会引导你抽丝剥茧,一探究竟! 我已经写了几篇与编程语言 ...