L16 LeNet
**本小节用到的数据下载
1、涉及语句 import d2lzh1981 as d2l
数据1 :
d2lzh1981
链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA
提取码:cf8s
2、FashionMNIST 数据集
数据2 : 为方便,可把数据直接下载下来。
为使用需
1)保持数据文件夹的路径把数据拷贝到jupyter notebook路径下
2)修改 home路径前加点 ,即’./home/kesci/input/FashionMNIST2065’)。
3)修改d2lzh1981文件下的utils.py 的load_data_fashion_mnist() 方法。为
torchvision.datasets.FashionMNIST(root=root, train=True, download=False, transform=transform)
FashionMNIST2065
链接:https://pan.baidu.com/s/1MLhOsusr5hqPn8sik1bUqw
提取码:v0l8**
course content
- lenet 模型介绍
- lenet 网络搭建
- 运用lenet进行图像识别-fashion-mnist数据集
Convolutional Neural Networks
使用全连接层的局限性:
- 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
- 对于大尺寸的输入图像,使用全连接层容易导致模型过大。
使用卷积层的优势:
- 卷积层保留输入形状。
- 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。
LeNet 模型
LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。
卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。
卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55 \times 55×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。
全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
下面我们通过Sequential类来实现LeNet模型。
#import
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
import torch
import torch.nn as nn
import torch.optim as optim
import time
#net
class Flatten(torch.nn.Module): #展平操作
def forward(self, x):
return x.view(x.shape[0], -1)
class Reshape(torch.nn.Module): #将图像大小重定型
def forward(self, x):
return x.view(-1,1,28,28) #(B x C x H x W)
net = torch.nn.Sequential( #Lelet
Reshape(),
nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), #b*1*28*28 =>b*6*28*28
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), #b*6*28*28 =>b*6*14*14
nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5), #b*6*14*14 =>b*16*10*10
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), #b*16*10*10 => b*16*5*5
Flatten(), #b*16*5*5 => b*400
nn.Linear(in_features=16*5*5, out_features=120),
nn.Sigmoid(),
nn.Linear(120, 84),
nn.Sigmoid(),
nn.Linear(84, 10)
)
接下来我们构造一个高和宽均为28的单通道数据样本,并逐层进行前向计算来查看每个层的输出形状。
#print
X = torch.randn(size=(1,1,28,28), dtype = torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: \t',X.shape)
Reshape output shape: torch.Size([1, 1, 28, 28])
Conv2d output shape: torch.Size([1, 6, 28, 28])
Sigmoid output shape: torch.Size([1, 6, 28, 28])
AvgPool2d output shape: torch.Size([1, 6, 14, 14])
Conv2d output shape: torch.Size([1, 16, 10, 10])
Sigmoid output shape: torch.Size([1, 16, 10, 10])
AvgPool2d output shape: torch.Size([1, 16, 5, 5])
Flatten output shape: torch.Size([1, 400])
Linear output shape: torch.Size([1, 120])
Sigmoid output shape: torch.Size([1, 120])
Linear output shape: torch.Size([1, 84])
Sigmoid output shape: torch.Size([1, 84])
Linear output shape: torch.Size([1, 10])
可以看到,在卷积层块中输入的高和宽在逐层减小。卷积层由于使用高和宽均为5的卷积核,从而将高和宽分别减小4,而池化层则将高和宽减半,但通道数则从1增加到16。全连接层则逐层减少输出个数,直到变成图像的类别数10。
获取数据和训练模型
下面我们来实现LeNet模型。我们仍然使用Fashion-MNIST作为训练数据集。
# 数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(
batch_size=batch_size, root='/home/kesci/input/FashionMNIST2065')
print(len(train_iter))
235
为了使读者更加形象的看到数据,添加额外的部分来展示数据的图像
#数据展示
import matplotlib.pyplot as plt
def show_fashion_mnist(images, labels):
d2l.use_svg_display()
# 这里的_表示我们忽略(不使用)的变量
_, figs = plt.subplots(1, len(images), figsize=(12, 12))
for f, img, lbl in zip(figs, images, labels):
f.imshow(img.view((28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show()
for Xdata,ylabel in train_iter:
break
X, y = [], []
for i in range(10):
print(Xdata[i].shape,ylabel[i].numpy())
X.append(Xdata[i]) # 将第i个feature加到X中
y.append(ylabel[i].numpy()) # 将第i个label加到y中
show_fashion_mnist(X, y)
torch.Size([1, 28, 28]) 3
torch.Size([1, 28, 28]) 8
torch.Size([1, 28, 28]) 1
torch.Size([1, 28, 28]) 4
torch.Size([1, 28, 28]) 0
torch.Size([1, 28, 28]) 0
torch.Size([1, 28, 28]) 4
torch.Size([1, 28, 28]) 9
torch.Size([1, 28, 28]) 4
torch.Size([1, 28, 28]) 7
因为卷积神经网络计算比多层感知机要复杂,建议使用GPU来加速计算。我们查看看是否可以用GPU,如果成功则使用cuda:0
,否则仍然使用cpu
。
# This function has been saved in the d2l package for future use
#use GPU
def try_gpu():
"""If GPU is available, return torch.device as cuda:0; else return torch.device as cpu."""
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
return device
device = try_gpu()
device
device(type='cpu')
我们实现evaluate_accuracy
函数,该函数用于计算模型net
在数据集data_iter
上的准确率。
#计算准确率
'''
(1). net.train()
启用 BatchNormalization 和 Dropout,将BatchNormalization和Dropout置为True
(2). net.eval()
不启用 BatchNormalization 和 Dropout,将BatchNormalization和Dropout置为False
'''
def evaluate_accuracy(data_iter, net,device=torch.device('cpu')):
"""Evaluate accuracy of a model on the given data set."""
acc_sum,n = torch.tensor([0],dtype=torch.float32,device=device),0
for X,y in data_iter:
# If device is the GPU, copy the data to the GPU.
X,y = X.to(device),y.to(device)
net.eval()
with torch.no_grad():
y = y.long()
acc_sum += torch.sum((torch.argmax(net(X), dim=1) == y)) #[[0.2 ,0.4 ,0.5 ,0.6 ,0.8] ,[ 0.1,0.2 ,0.4 ,0.3 ,0.1]] => [ 4 , 2 ]
n += y.shape[0]
return acc_sum.item()/n
我们定义函数train_ch5
,用于训练模型。
#训练函数
def train_ch5(net, train_iter, test_iter,criterion, num_epochs, batch_size, device,lr=None):
"""Train and evaluate a model with CPU or GPU."""
print('training on', device)
net.to(device)
optimizer = optim.SGD(net.parameters(), lr=lr)
for epoch in range(num_epochs):
train_l_sum = torch.tensor([0.0],dtype=torch.float32,device=device)
train_acc_sum = torch.tensor([0.0],dtype=torch.float32,device=device)
n, start = 0, time.time()
for X, y in train_iter:
net.train()
optimizer.zero_grad()
X,y = X.to(device),y.to(device)
y_hat = net(X)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
with torch.no_grad():
y = y.long()
train_l_sum += loss.float()
train_acc_sum += (torch.sum((torch.argmax(y_hat, dim=1) == y))).float()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net,device)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
'time %.1f sec'
% (epoch + 1, train_l_sum/n, train_acc_sum/n, test_acc,
time.time() - start))
我们重新将模型参数初始化到对应的设备device
(cpu
or cuda:0
)之上,并使用Xavier随机初始化。损失函数和训练算法则依然使用交叉熵损失函数和小批量随机梯度下降。
# 训练
lr, num_epochs = 0.9, 10
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
torch.nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
net = net.to(device)
criterion = nn.CrossEntropyLoss() #交叉熵描述了两个概率分布之间的距离,交叉熵越小说明两者之间越接近
train_ch5(net, train_iter, test_iter, criterion,num_epochs, batch_size,device, lr)
training on cpu
epoch 1, loss 0.0091, train acc 0.100, test acc 0.168, time 21.6 sec
epoch 2, loss 0.0065, train acc 0.355, test acc 0.599, time 21.5 sec
epoch 3, loss 0.0035, train acc 0.651, test acc 0.665, time 21.8 sec
epoch 4, loss 0.0028, train acc 0.717, test acc 0.723, time 21.7 sec
epoch 5, loss 0.0025, train acc 0.746, test acc 0.753, time 21.4 sec
epoch 6, loss 0.0023, train acc 0.767, test acc 0.754, time 21.5 sec
epoch 7, loss 0.0022, train acc 0.782, test acc 0.785, time 21.3 sec
epoch 8, loss 0.0021, train acc 0.798, test acc 0.791, time 21.8 sec
epoch 9, loss 0.0019, train acc 0.811, test acc 0.790, time 22.0 sec
epoch 10, loss 0.0019, train acc 0.821, test acc 0.804, time 22.1 sec
# test
for testdata,testlabe in test_iter:
testdata,testlabe = testdata.to(device),testlabe.to(device)
break
print(testdata.shape,testlabe.shape)
net.eval()
y_pre = net(testdata)
print(torch.argmax(y_pre,dim=1)[:10])
print(testlabe[:10])
torch.Size([256, 1, 28, 28]) torch.Size([256])
tensor([9, 2, 1, 1, 6, 1, 2, 6, 5, 7])
tensor([9, 2, 1, 1, 6, 1, 4, 6, 5, 7])
总结:
卷积神经网络就是含卷积层的网络。
LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。
L16 LeNet的更多相关文章
- 卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的C ...
- caffe_手写数字识别Lenet模型理解
这两天看了Lenet的模型理解,很简单的手写数字CNN网络,90年代美国用它来识别钞票,准确率还是很高的,所以它也是一个很经典的模型.而且学习这个模型也有助于我们理解更大的网络比如Imagenet等等 ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
- 基于LeNet网络的中文验证码识别
基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...
- 【Caffe 测试】Training LeNet on MNIST with Caffe
Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, ...
- CNN网络架构演进:从LeNet到DenseNet
卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF ...
- 经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷 ...
- 卷积神经网络的一些经典网络(Lenet,AlexNet,VGG16,ResNet)
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数 ...
- 卷积神经网络之LeNet
开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构 ...
随机推荐
- IdentityServer4源码解析_5_查询用户信息接口
协议简析 UserInfo接口是OAuth2.0中规定的需要认证访问的接口,可以返回认证用户的声明信息.请求UserInfo接口需要使用通行令牌.响应报文通常是json数据格式,包含了一组claim键 ...
- leetcode之820. 单词的压缩编码 | python极简实现字典树
题目 给定一个单词列表,我们将这个列表编码成一个索引字符串 S 与一个索引列表 A. 例如,如果这个列表是 ["time", "me", "bell& ...
- 图-搜索-BFS-DFS-126. 单词接龙 II
2020-03-19 13:10:35 问题描述: 给定两个单词(beginWord 和 endWord)和一个字典 wordList,找出所有从 beginWord 到 endWord 的最短转换序 ...
- 北邮OJ 89. 统计时间间隔 java版
89. 统计时间间隔 时间限制 1000 ms 内存限制 65536 KB 题目描述 给出两个时间(24小时制),求第一个时间至少要经过多久才能到达第二个时间.给出的时间一定满足的形式,其中x和y分别 ...
- Nginx Configure
1.主配置/etc/nginx.conf #/etc/nginx/nginx.conf user nginx; worker_processes auto; error_log /var/log/ng ...
- Python python 五种数据类型--字符串
# python 字符串的初始化 var1 = 'hello,world' # python 字符串为不可变类型 var2= var1* 2 print(var1) #hello,world prin ...
- .NET 5.0 Preview 2发布
2020年4月2日微软.NET 团队的项目经理 Richard 在博客上 发布了.NET 5 Preview 2:https://devblogs.microsoft.com/dotnet/annou ...
- Matlab——m_map指南(2)
3.海岸线和深度测量 3.1.1 海岸线选项 m_coast('line', ...optional line arguments ); m_coast('line', ...optional lin ...
- 关于laravel5.4.12新增集合操作when方法详解
从v5.4.12开始,Laravel Collections现在包括一个when方法,允许您对项目执行条件操作,而不会中断链. 像所有其他Laravel 集合方法,这一个可以有很多用例,选择其中一个例 ...
- dp例题01. 任务价值最大化
题目Description: 大凯有n项任务可选择去做, 分别对应有开始时间, 结束时间以及任务报酬, 同一时间内最多做一件任务, 现在大凯想知道最多能得到多少报酬, 于是把求解任务交给了你. 输入: ...