原文链接】最长公共子序列(Longest Common Subsequence,简称 LCS)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划,大部分比较困难的字符串问题都和这个问题一个套路,比如说编辑距离。而且,这个算法稍加改造就可以用于解决其他问题,所以说 LCS 算法是值得掌握的。

题目就是让我们求两个字符串的 LCS 长度:

输入: str1 = "abcde", str2 = "ace"
输出: 3
解释: 最长公共子序列是 "ace",它的长度是 3

肯定有读者会问,为啥这个问题就是动态规划来解决呢?因为子序列类型的问题,穷举出所有可能的结果都不容易,而动态规划算法做的就是穷举 + 剪枝,它俩天生一对儿。所以可以说只要涉及子序列问题,十有八九都需要动态规划来解决,往这方面考虑就对了。

下面就来手把手分析一下,这道题目如何用动态规划技巧解决。

动态规划思路

第一步,一定要明确 dp 数组的含义。对于两个字符串的动态规划问题,套路是通用的。

比如说对于字符串 s1 和 s2,一般来说都要构造一个这样的 DP table:

为了方便理解此表,我们暂时认为索引是从 1 开始的,待会的代码中只要稍作调整即可。其中,dp[i][j] 的含义是:对于 s1[1..i] 和 s2[1..j],它们的 LCS 长度是 dp[i][j]。

比如上图的例子,d[2][4] 的含义就是:对于 "ac""babc",它们的 LCS 长度是 2。我们最终想得到的答案应该是 dp[3][6]

第二步,定义 base case。

我们专门让索引为 0 的行和列表示空串,dp[0][..] 和 dp[..][0] 都应该初始化为 0,这就是 base case。

比如说,按照刚才 dp 数组的定义,dp[0][3]=0 的含义是:对于字符串 "" 和 "bab",其 LCS 的长度为 0。因为有一个字符串是空串,它们的最长公共子序列的长度显然应该是 0。

第三步,找状态转移方程。

这是动态规划最难的一步,不过好在这种字符串问题的套路都差不多,权且借这道题来聊聊处理这类问题的思路。

状态转移说简单些就是做选择,比如说这个问题,是求 s1 和 s2 的最长公共子序列,不妨称这个子序列为 lcs。那么对于 s1 和 s2 中的每个字符,有什么选择?很简单,两种选择,要么在 lcs 中,要么不在。

这个「在」和「不在」就是选择,关键是,应该如何选择呢?这个需要动点脑筋:如果某个字符应该在 lcs 中,那么这个字符肯定同时存在于 s1 和 s2 中,因为 lcs 是最长公共子序列嘛。所以本题的思路是这样:

用两个指针 i 和 j 从后往前遍历 s1 和 s2,如果 s1[i]==s2[j],那么这个字符一定在 lcs 中;否则的话,s1[i] 和 s2[j] 这两个字符至少有一个不在 lcs 中,需要丢弃一个。先看一下递归解法,比较容易理解:

def longestCommonSubsequence(str1, str2) -> int:
def dp(i, j):
# 空串的 base case
if i == -1 or j == -1:
return 0
if str1[i] == str2[j]:
# 这边找到一个 lcs 的元素,继续往前找
return dp(i - 1, j - 1) + 1
else:
# 谁能让 lcs 最长,就听谁的
return max(dp(i-1, j), dp(i, j-1)) # i 和 j 初始化为最后一个索引
return dp(len(str1)-1, len(str2)-1)

对于第一种情况,找到一个 lcs 中的字符,同时将 i j 向前移动一位,并给 lcs 的长度加一;对于后者,则尝试两种情况,取更大的结果。

其实这段代码就是暴力解法,我们可以通过备忘录或者 DP table 来优化时间复杂度,比如通过前文描述的 DP table 来解决:

class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
int[][] dp = new int[m + 1][n + 1];
for(int i = 1;i <= m;i++){
for(int j = 1;j <= n;j++){
if(text1.charAt(i - 1) == text2.charAt(j - 1))
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]);
}
}
return dp[m][n];
}
}

总结

对于两个字符串的动态规划问题,一般来说都是像本文一样定义 DP table,因为这样定义有一个好处,就是容易写出状态转移方程,dp[i][j] 的状态可以通过之前的状态推导出来:

找状态转移方程的方法是,思考每个状态有哪些「选择」,只要我们能用正确的逻辑做出正确的选择,算法就能够正确运行。

【转】动态规划之最长公共子序列(LCS)的更多相关文章

  1. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  2. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  3. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  4. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  5. 1006 最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...

  6. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  7. 51Nod 1006:最长公共子序列Lcs(打印LCS)

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  8. 51nod 1006 最长公共子序列Lcs 【LCS/打印path】

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  9. 每日一题-——最长公共子序列(LCS)与最长公共子串

    最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...

  10. 51nod 1006:最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. 学习java应该具备哪些以及怎么学习java

    JAVA为什么有前途?过去的十多年,JAVA基本每年都是全世界使用人数第一的语言.全世界数百万的IT企业构建了庞大的JAVA生态圈,大量的软件基于JAVA开发. JAVA也被誉为“计算机界的英语”. ...

  2. 服务器安装 mongodb

    参考 https://www.cnblogs.com/layezi/p/7290082.html

  3. iOS UmbrellaHeader

    Lexical or Preprocessor Issue - Umbrella header for module 'xxx' does not include header 'xxx.h' fra ...

  4. BZOJ 4472 salesman 题解

    题目 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇之间都只有唯一的可能经过其它城镇的路线.小T可以准确地估计出在每个城镇停留的净收益.这些净收益可能是负数,即推销商品的 ...

  5. 实验十一 MySQLl备份与恢复1

    实验十一 MySQL备份与恢复 一.  实验内容: 1. 使用SQL语句导入和导出表数据 2. 使用客户端工具备份还原数据库 3. 使用日志文件恢复数据库 二.  实验项目:学生成绩数据库 创建用于学 ...

  6. Visual Studio Code 1.44 解决中文代码显示乱码问题(小白图文教程)

    现今主流的计算机中文字符编码方案是:GBK和UTF-8. 不同编码方案使用不同的字符集,GBK字符集在中文字符长度和字符数量上存在绝对优势,但对国外字符并不支持.所以,完全面向国内的程序/网页使用的是 ...

  7. Java数组的声明与创建

    今天在刷Java题的时候,写惯了C++发现忘记了Java数组的操作,遂把以前写的文章发出来温习一下. 首先,数组有几种创建方式? Java程序中的数组必须先进行初始化才可以使用,所谓初始化,就是为数组 ...

  8. Socket探索1-两种Socket服务端实现

    介绍 一次简单的Socket探索之旅,分别对Socket服务端的两种方式进行了测试和解析. CommonSocket 代码实现 实现一个简单的Socket服务,基本功能就是接收消息然后加上结束消息时间 ...

  9. es实现mysql的like查询

    es版本6.8 因为阿里云的dts同步最高支持es版本就是6.8 构建索引 PUT /z_test/ { "mappings": { "doc": { &quo ...

  10. Spire.Cloud 私有化部署教程(二)- Ubuntu 18.04 系统

    本教程主要介绍如何在Ubuntu 18.04系统上实现Spire.Cloud私有化部署.CentOS 7系统部署请参考 这篇教程. 详细步骤如下: 一.环境配置 1.关闭防火墙 1)首先查看防火墙状态 ...